|
a |
|
b/Segmentation/model/unet.py |
|
|
1 |
import tensorflow as tf |
|
|
2 |
import tensorflow.keras.layers as tfkl |
|
|
3 |
from Segmentation.model.unet_build_blocks import Conv_Block, Up_Conv |
|
|
4 |
from Segmentation.model.unet_build_blocks import Attention_Gate |
|
|
5 |
from Segmentation.model.unet_build_blocks import Recurrent_ResConv_block |
|
|
6 |
from Segmentation.model.backbone import Encoder |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
class UNet(tf.keras.Model): |
|
|
10 |
""" Tensorflow 2 Implementation of 'U-Net: Convolutional Networks for |
|
|
11 |
Biomedical Image Segmentation' https://arxiv.org/abs/1505.04597.""" |
|
|
12 |
|
|
|
13 |
def __init__(self, |
|
|
14 |
num_channels, |
|
|
15 |
num_classes, |
|
|
16 |
use_2d=True, |
|
|
17 |
backbone_name='default', |
|
|
18 |
num_conv_layers=2, |
|
|
19 |
kernel_size=3, |
|
|
20 |
nonlinearity='relu', |
|
|
21 |
use_attention=False, |
|
|
22 |
use_batchnorm=True, |
|
|
23 |
use_bias=True, |
|
|
24 |
use_dropout=False, |
|
|
25 |
dropout_rate=0.25, |
|
|
26 |
use_spatial_dropout=True, |
|
|
27 |
data_format='channels_last', |
|
|
28 |
**kwargs): |
|
|
29 |
|
|
|
30 |
super(UNet, self).__init__(**kwargs) |
|
|
31 |
|
|
|
32 |
self.backbone_name = backbone_name |
|
|
33 |
self.contracting_path = [] |
|
|
34 |
self.upsampling_path = [] |
|
|
35 |
|
|
|
36 |
if self.backbone_name == 'default': |
|
|
37 |
for i in range(len(num_channels)): |
|
|
38 |
output = num_channels[i] |
|
|
39 |
self.contracting_path.append(Conv_Block(num_channels=output, |
|
|
40 |
use_2d=use_2d, |
|
|
41 |
num_conv_layers=num_conv_layers, |
|
|
42 |
kernel_size=kernel_size, |
|
|
43 |
nonlinearity=nonlinearity, |
|
|
44 |
use_batchnorm=use_batchnorm, |
|
|
45 |
use_bias=use_bias, |
|
|
46 |
use_dropout=use_dropout, |
|
|
47 |
dropout_rate=dropout_rate, |
|
|
48 |
use_spatial_dropout=use_spatial_dropout, |
|
|
49 |
data_format=data_format)) |
|
|
50 |
if i != len(num_channels) - 1: |
|
|
51 |
if use_2d: |
|
|
52 |
self.contracting_path.append(tfkl.MaxPooling2D()) |
|
|
53 |
else: |
|
|
54 |
self.contracting_path.append(tfkl.MaxPooling3D()) |
|
|
55 |
else: |
|
|
56 |
assert use_2d is True |
|
|
57 |
encoder = Encoder(weights_init='imagenet', model_architecture=backbone_name) |
|
|
58 |
encoder.freeze_pretrained_layers() |
|
|
59 |
self.backbone = encoder.construct_backbone() |
|
|
60 |
|
|
|
61 |
n = len(self.num_channels) - 2 |
|
|
62 |
for i in range(n, -1, -1): |
|
|
63 |
output = num_channels[i] |
|
|
64 |
self.upsampling_path.append(Up_Conv(output, |
|
|
65 |
use_2d=use_2d, |
|
|
66 |
kernel_size=2, |
|
|
67 |
nonlinearity=nonlinearity, |
|
|
68 |
use_attention=use_attention, |
|
|
69 |
use_batchnorm=use_batchnorm, |
|
|
70 |
use_transpose=False, |
|
|
71 |
use_bias=use_bias, |
|
|
72 |
strides=2, |
|
|
73 |
data_format=data_format)) |
|
|
74 |
|
|
|
75 |
if use_2d: |
|
|
76 |
self.conv_1x1 = tfkl.Conv2D(num_classes, |
|
|
77 |
(1, 1), |
|
|
78 |
activation='sigmoid' if num_classes == 1 else 'softmax', |
|
|
79 |
padding='same', |
|
|
80 |
data_format=data_format) |
|
|
81 |
else: |
|
|
82 |
self.conv_1x1 = tfkl.Conv3D(num_classes, |
|
|
83 |
(1, 1, 1), |
|
|
84 |
activation='linear' if num_classes == 1 else 'softmax', |
|
|
85 |
padding='same', |
|
|
86 |
data_format=data_format) |
|
|
87 |
|
|
|
88 |
def call(self, x, training=False): |
|
|
89 |
blocks = [] |
|
|
90 |
if self.backbone_name == 'default': |
|
|
91 |
for i, down in enumerate(self.contracting_path): |
|
|
92 |
x = down(x, training=training) |
|
|
93 |
if i != len(self.contracting_path) - 1: |
|
|
94 |
blocks.append(x) |
|
|
95 |
else: |
|
|
96 |
bridge_1, bridge_2, bridge_3, bridge_4, x = self.backbone(x, training=training) |
|
|
97 |
blocks.extend([bridge_1, bridge_2, bridge_3, bridge_4]) |
|
|
98 |
|
|
|
99 |
for j, up in enumerate(self.upsampling_path): |
|
|
100 |
if self.backbone_name in ['default']: |
|
|
101 |
x = up(x, blocks[-2 * j - 2], training=training) |
|
|
102 |
else: |
|
|
103 |
x = up(x, blocks[-j - 1], training=training) |
|
|
104 |
|
|
|
105 |
del blocks |
|
|
106 |
|
|
|
107 |
if self.backbone_name not in ['default', 'vgg16', 'vgg19']: |
|
|
108 |
x = tfkl.UpSampling2D()(x) |
|
|
109 |
|
|
|
110 |
output = self.conv_1x1(x) |
|
|
111 |
return output |
|
|
112 |
|
|
|
113 |
class R2_UNet(tf.keras.Model): |
|
|
114 |
""" Tensorflow 2 Implementation of 'Recurrent Residual Convolutional |
|
|
115 |
Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation' |
|
|
116 |
https://arxiv.org/ftp/arxiv/papers/1802/1802.06955.pdf.""" |
|
|
117 |
|
|
|
118 |
def __init__(self, |
|
|
119 |
num_channels, |
|
|
120 |
num_classes, |
|
|
121 |
use_2d=True, |
|
|
122 |
num_conv_layers=2, |
|
|
123 |
kernel_size=3, |
|
|
124 |
nonlinearity='relu', |
|
|
125 |
t=2, |
|
|
126 |
use_attention=False, |
|
|
127 |
use_batchnorm=True, |
|
|
128 |
use_bias=True, |
|
|
129 |
data_format='channels_last', |
|
|
130 |
**kwargs): |
|
|
131 |
|
|
|
132 |
super(R2_UNet, self).__init__(**kwargs) |
|
|
133 |
|
|
|
134 |
self.contracting_path = [] |
|
|
135 |
self.upsampling_path = [] |
|
|
136 |
|
|
|
137 |
for i in range(len(num_channels)): |
|
|
138 |
output = num_channels[i] |
|
|
139 |
self.contracting_path.append(Recurrent_ResConv_block(num_channels=output, |
|
|
140 |
use_2d=use_2d, |
|
|
141 |
kernel_size=kernel_size, |
|
|
142 |
nonlinearity=nonlinearity, |
|
|
143 |
padding='same', |
|
|
144 |
strides=1, |
|
|
145 |
t=t, |
|
|
146 |
use_batchnorm=use_batchnorm, |
|
|
147 |
data_format=data_format)) |
|
|
148 |
if i != len(num_channels) - 1: |
|
|
149 |
if use_2d: |
|
|
150 |
self.contracting_path.append(tfkl.MaxPooling2D()) |
|
|
151 |
else: |
|
|
152 |
self.contracting_path.append(tfkl.MaxPooling3D()) |
|
|
153 |
|
|
|
154 |
n = len(num_channels) - 2 |
|
|
155 |
for i in range(n, -1, -1): |
|
|
156 |
output = num_channels[i] |
|
|
157 |
up_conv = Up_Conv(output, |
|
|
158 |
use_2d, |
|
|
159 |
kernel_size=2, |
|
|
160 |
nonlinearity=nonlinearity, |
|
|
161 |
use_attention=use_attention, |
|
|
162 |
use_batchnorm=use_batchnorm, |
|
|
163 |
use_transpose=False, |
|
|
164 |
use_bias=use_bias, |
|
|
165 |
strides=2, |
|
|
166 |
data_format=data_format) |
|
|
167 |
|
|
|
168 |
# override default conv block with recurrent-residual conv block |
|
|
169 |
up_conv.conv_block = Recurrent_ResConv_block(num_channels=output, |
|
|
170 |
use_2d=use_2d, |
|
|
171 |
kernel_size=kernel_size, |
|
|
172 |
nonlinearity=nonlinearity, |
|
|
173 |
padding='same', |
|
|
174 |
strides=1, |
|
|
175 |
t=t, |
|
|
176 |
use_batchnorm=use_batchnorm, |
|
|
177 |
data_format=data_format) |
|
|
178 |
|
|
|
179 |
self.upsampling_path.append(up_conv) |
|
|
180 |
|
|
|
181 |
if use_2d: |
|
|
182 |
self.conv_1x1 = tfkl.Conv2D(filters=num_classes, |
|
|
183 |
kernel_size=(1, 1), |
|
|
184 |
activation='sigmoid' if num_classes == 1 else 'softmax', |
|
|
185 |
padding='same', |
|
|
186 |
data_format=data_format) |
|
|
187 |
else: |
|
|
188 |
self.conv_1x1 = tfkl.Conv3D(filters=num_classes, |
|
|
189 |
kernel_size=(1, 1, 1), |
|
|
190 |
activation='sigmoid' if num_classes == 1 else 'softmax', |
|
|
191 |
padding='same', |
|
|
192 |
data_format=data_format) |
|
|
193 |
|
|
|
194 |
def call(self, x, training=False): |
|
|
195 |
blocks = [] |
|
|
196 |
for i, down in enumerate(self.contracting_path): |
|
|
197 |
x = down(x, training=training) |
|
|
198 |
if i != len(self.contracting_path) - 1: |
|
|
199 |
blocks.append(x) |
|
|
200 |
|
|
|
201 |
for j, up in enumerate(self.upsampling_path): |
|
|
202 |
x = up(x, blocks[-2 * j - 2], training=training) |
|
|
203 |
|
|
|
204 |
del blocks |
|
|
205 |
|
|
|
206 |
output = self.conv_1x1(x) |
|
|
207 |
|
|
|
208 |
return output |
|
|
209 |
|
|
|
210 |
class Nested_UNet(tf.keras.Model): |
|
|
211 |
""" Tensorflow 2 Implementation of 'UNet++: A Nested |
|
|
212 |
U-Net Architecture for Medical Image Segmentation' |
|
|
213 |
https://arxiv.org/pdf/1807.10165.pdf """ |
|
|
214 |
|
|
|
215 |
def __init__(self, |
|
|
216 |
num_channels, |
|
|
217 |
num_classes, |
|
|
218 |
use_2d=True, |
|
|
219 |
num_conv_layers=2, |
|
|
220 |
kernel_size=(3, 3), |
|
|
221 |
nonlinearity='relu', |
|
|
222 |
use_batchnorm=True, |
|
|
223 |
use_bias=True, |
|
|
224 |
data_format='channels_last', |
|
|
225 |
**kwargs): |
|
|
226 |
|
|
|
227 |
super(Nested_UNet, self).__init__(**kwargs) |
|
|
228 |
|
|
|
229 |
self.conv_block_lists = [] |
|
|
230 |
self.pool = tfkl.MaxPooling2D() if use_2d else tfkl.MaxPooling3D() |
|
|
231 |
self.up = tfkl.UpSampling2D() if use_2d else tfkl.UpSampling3D() |
|
|
232 |
|
|
|
233 |
for i in range(len(num_channels)): |
|
|
234 |
output_ch = num_channels[i] |
|
|
235 |
conv_layer_lists = [] |
|
|
236 |
num_conv_blocks = len(num_channels) - i |
|
|
237 |
|
|
|
238 |
for _ in range(num_conv_blocks): |
|
|
239 |
conv_layer_lists.append(Conv_Block(num_channels=output_ch, |
|
|
240 |
use_2d=use_2d, |
|
|
241 |
num_conv_layers=num_conv_layers, |
|
|
242 |
kernel_size=kernel_size, |
|
|
243 |
nonlinearity=nonlinearity, |
|
|
244 |
use_batchnorm=use_batchnorm, |
|
|
245 |
use_bias=use_bias, |
|
|
246 |
data_format=data_format)) |
|
|
247 |
|
|
|
248 |
self.conv_block_lists.append(conv_layer_lists) |
|
|
249 |
|
|
|
250 |
if use_2d: |
|
|
251 |
self.conv_1x1 = tfkl.Conv2D(num_classes, |
|
|
252 |
(1, 1), |
|
|
253 |
activation='sigmoid' if self.num_classes == 1 else 'softmax', |
|
|
254 |
padding='same', |
|
|
255 |
data_format=data_format) |
|
|
256 |
else: |
|
|
257 |
self.conv_1x1 = tfkl.Conv3D(num_classes, |
|
|
258 |
(1, 1, 1), |
|
|
259 |
activation='sigmoid' if self.num_classes == 1 else 'softmax', |
|
|
260 |
padding='same', |
|
|
261 |
data_format=data_format) |
|
|
262 |
|
|
|
263 |
def call(self, input, training=False): |
|
|
264 |
|
|
|
265 |
block_list = [] |
|
|
266 |
x = self.conv_block_lists[0][0](input, training=training) |
|
|
267 |
block_list.append([x]) |
|
|
268 |
for sum_idx in range(1, len(self.conv_block_lists)): |
|
|
269 |
left_idx = sum_idx |
|
|
270 |
right_idx = 0 |
|
|
271 |
layer_list = [] |
|
|
272 |
while right_idx <= sum_idx: |
|
|
273 |
if left_idx == sum_idx: |
|
|
274 |
x = self.conv_block_lists[left_idx][right_idx](self.pool(block_list[left_idx - 1][right_idx]), |
|
|
275 |
training=training) |
|
|
276 |
else: |
|
|
277 |
concat_list = [self.up(x)] |
|
|
278 |
for idx in range(1, right_idx + 1): |
|
|
279 |
concat_list.append(block_list[left_idx + idx - 1][-1 + idx]) |
|
|
280 |
x = self.conv_block_lists[left_idx][right_idx](tfkl.concatenate(concat_list), |
|
|
281 |
training=training) |
|
|
282 |
left_idx -= 1 |
|
|
283 |
right_idx += 1 |
|
|
284 |
layer_list.append(x) |
|
|
285 |
block_list.append(layer_list) |
|
|
286 |
output = self.conv_1x1(x) |
|
|
287 |
|
|
|
288 |
return output |
|
|
289 |
|
|
|
290 |
class Nested_UNet_v2(tf.keras.Model): |
|
|
291 |
|
|
|
292 |
def __init__(self, |
|
|
293 |
num_channels, |
|
|
294 |
num_classes, |
|
|
295 |
use_2d=True, |
|
|
296 |
num_conv_layers=2, |
|
|
297 |
kernel_size=(3, 3), |
|
|
298 |
nonlinearity='relu', |
|
|
299 |
use_batchnorm=True, |
|
|
300 |
use_bias=True, |
|
|
301 |
data_format='channels_last', |
|
|
302 |
**kwargs): |
|
|
303 |
|
|
|
304 |
super(Nested_UNet, self).__init__(**kwargs) |
|
|
305 |
|
|
|
306 |
self.conv_block_lists = [] |
|
|
307 |
self.pool = tfkl.MaxPooling2D() if use_2d else tfkl.MaxPooling3D() |
|
|
308 |
self.up = tfkl.UpSampling2D() if use_2d else tfkl.UpSampling3D() |
|
|
309 |
|
|
|
310 |
for i in range(len(num_channels)): |
|
|
311 |
output_ch = num_channels[i] |
|
|
312 |
conv_layer_lists = [] |
|
|
313 |
num_conv_blocks = len(num_channels) - i |
|
|
314 |
|
|
|
315 |
for _ in range(num_conv_blocks): |
|
|
316 |
conv_layer_lists.append(Conv_Block(num_channels=output_ch, |
|
|
317 |
use_2d=use_2d, |
|
|
318 |
num_conv_layers=num_conv_layers, |
|
|
319 |
kernel_size=kernel_size, |
|
|
320 |
nonlinearity=nonlinearity, |
|
|
321 |
use_batchnorm=use_batchnorm, |
|
|
322 |
use_bias=use_bias, |
|
|
323 |
data_format=data_format)) |
|
|
324 |
|
|
|
325 |
self.conv_block_lists.append(conv_layer_lists) |
|
|
326 |
|
|
|
327 |
if use_2d: |
|
|
328 |
self.conv_1x1 = tfkl.Conv2D(num_classes, |
|
|
329 |
(1, 1), |
|
|
330 |
activation='sigmoid' if self.num_classes == 1 else 'softmax', |
|
|
331 |
padding='same', |
|
|
332 |
data_format=data_format) |
|
|
333 |
else: |
|
|
334 |
self.conv_1x1 = tfkl.Conv3D(num_classes, |
|
|
335 |
(1, 1, 1), |
|
|
336 |
activation='sigmoid' if self.num_classes == 1 else 'softmax', |
|
|
337 |
padding='same', |
|
|
338 |
data_format=data_format) |
|
|
339 |
|
|
|
340 |
def call(self, input, training=False): |
|
|
341 |
|
|
|
342 |
x = dict() |
|
|
343 |
use_x = list() |
|
|
344 |
x['0_0'] = self.conv_block_lists[0][0](input, training=training) |
|
|
345 |
last_0_name = '0_0' |
|
|
346 |
last_name = last_0_name |
|
|
347 |
|
|
|
348 |
for sum in range(1, len(self.conv_block_lists)): |
|
|
349 |
i, j = sum, 0 |
|
|
350 |
while j <= sum: |
|
|
351 |
|
|
|
352 |
name = str(i) + '_' + str(j) |
|
|
353 |
|
|
|
354 |
if i == sum: |
|
|
355 |
x[name] = self.conv_block_lists[i][j](self.pool(x[last_0_name]), training=training) |
|
|
356 |
last_0_name = name |
|
|
357 |
|
|
|
358 |
else: |
|
|
359 |
for temp_right in range(0, j): |
|
|
360 |
string = str(i) + '_' + str(temp_right) |
|
|
361 |
use_x.append(x[string]) |
|
|
362 |
|
|
|
363 |
use_x.append(self.up(x[last_name])) |
|
|
364 |
x[name] = self.conv_block_lists[i][j](tfkl.concatenate(use_x), training=training) |
|
|
365 |
|
|
|
366 |
use_x.clear() |
|
|
367 |
last = (i, j) |
|
|
368 |
last_name = name |
|
|
369 |
i = i - 1 |
|
|
370 |
j = j + 1 |
|
|
371 |
|
|
|
372 |
output = self.conv_1x1(x[last_name]) |
|
|
373 |
|
|
|
374 |
return output |