|
a |
|
b/Segmentation/model/segnet.py |
|
|
1 |
import tensorflow as tf |
|
|
2 |
import tensorflow.keras.layers as tfkl |
|
|
3 |
|
|
|
4 |
class SegNet (tf.keras.Model): |
|
|
5 |
""" Tensorflow 2 Implementation of 'SegNet: A Deep Convolutional Encoder-Decoder |
|
|
6 |
Architecture for Image Segmentation' https://arxiv.org/abs/1611.09326 """ |
|
|
7 |
|
|
|
8 |
def __init__(self, |
|
|
9 |
num_channels, |
|
|
10 |
num_classes, |
|
|
11 |
backbone='default', |
|
|
12 |
kernel_size=(3, 3), |
|
|
13 |
pool_size=(2, 2), |
|
|
14 |
nonlinearity='relu', |
|
|
15 |
use_batchnorm=True, |
|
|
16 |
use_bias=True, |
|
|
17 |
use_transpose=False, |
|
|
18 |
use_dropout=False, |
|
|
19 |
dropout_rate=0.25, |
|
|
20 |
use_spatial_dropout=True, |
|
|
21 |
data_format='channels_last', |
|
|
22 |
**kwargs): |
|
|
23 |
|
|
|
24 |
super(SegNet, self).__init__(**kwargs) |
|
|
25 |
|
|
|
26 |
self.num_classes = num_classes |
|
|
27 |
self.num_channels = num_channels |
|
|
28 |
self.backbone = backbone |
|
|
29 |
self.kernel_size = kernel_size |
|
|
30 |
self.pool_size = pool_size |
|
|
31 |
self.nonlinearity = nonlinearity |
|
|
32 |
self.use_batchnorm = use_batchnorm |
|
|
33 |
self.use_bias = use_bias |
|
|
34 |
self.use_transpose = use_transpose |
|
|
35 |
self.use_dropout = use_dropout |
|
|
36 |
self.dropout_rate = dropout_rate |
|
|
37 |
self.use_spatial_dropout = use_spatial_dropout |
|
|
38 |
self.data_format = data_format |
|
|
39 |
|
|
|
40 |
self.conv_list = tf.keras.Sequential() |
|
|
41 |
for i in range(len(self.num_channels)): |
|
|
42 |
output_ch = self.num_channels[i] |
|
|
43 |
if i == 0 or i == 1: |
|
|
44 |
num_conv = 2 |
|
|
45 |
else: |
|
|
46 |
num_conv = 3 |
|
|
47 |
|
|
|
48 |
self.conv_list.add(SegNet_Conv2D_Block(output_ch, |
|
|
49 |
num_conv, |
|
|
50 |
self.kernel_size, |
|
|
51 |
self.pool_size, |
|
|
52 |
self.nonlinearity, |
|
|
53 |
self.use_batchnorm, |
|
|
54 |
self.use_bias, |
|
|
55 |
self.use_dropout, |
|
|
56 |
self.dropout_rate, |
|
|
57 |
self.use_spatial_dropout, |
|
|
58 |
self.data_format)) |
|
|
59 |
|
|
|
60 |
self.up_conv_list = tf.keras.Sequential() |
|
|
61 |
n = len(self.num_channels) - 1 |
|
|
62 |
|
|
|
63 |
for j in range(n, -1, -1): |
|
|
64 |
output = self.num_channels[j] |
|
|
65 |
if j in [n, n - 1, n - 2]: |
|
|
66 |
num_conv = 3 |
|
|
67 |
else: |
|
|
68 |
num_conv = 2 |
|
|
69 |
self.up_conv_list.add(segnet_Up_Conv2D_block(output, |
|
|
70 |
num_conv_layers=num_conv, |
|
|
71 |
kernel_size=(2, 2), |
|
|
72 |
upsampling_size=(2, 2), |
|
|
73 |
nonlinearity=self.nonlinearity, |
|
|
74 |
use_batchnorm=self.use_batchnorm, |
|
|
75 |
use_transpose=self.use_transpose, |
|
|
76 |
use_bias=self.use_bias, |
|
|
77 |
strides=(2, 2), |
|
|
78 |
data_format=self.data_format)) |
|
|
79 |
|
|
|
80 |
self.conv_1x1 = tfkl.Conv2D(num_classes, |
|
|
81 |
(1, 1), |
|
|
82 |
activation='linear', |
|
|
83 |
padding='same', |
|
|
84 |
data_format=data_format) |
|
|
85 |
|
|
|
86 |
def call(self, x, training=False): |
|
|
87 |
|
|
|
88 |
encoded = self.conv_list(x, training=training) |
|
|
89 |
decoded = self.up_conv_list(encoded, training=training) |
|
|
90 |
output = self.conv_1x1(decoded) |
|
|
91 |
|
|
|
92 |
if self.num_classes == 1: |
|
|
93 |
output = tfkl.Activation('sigmoid')(output) |
|
|
94 |
else: |
|
|
95 |
output = tfkl.Activation('softmax')(output) |
|
|
96 |
return output |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
class SegNet_Conv2D_Block(tf.keras.Sequential): |
|
|
100 |
|
|
|
101 |
def __init__(self, |
|
|
102 |
num_channels, |
|
|
103 |
num_conv_layers=2, |
|
|
104 |
kernel_size=(3, 3), |
|
|
105 |
pool_size=(2, 2), |
|
|
106 |
nonlinearity='relu', |
|
|
107 |
use_batchnorm=True, |
|
|
108 |
use_bias=True, |
|
|
109 |
use_dropout=False, |
|
|
110 |
dropout_rate=0.25, |
|
|
111 |
use_spatial_dropout=True, |
|
|
112 |
data_format='channels_last', |
|
|
113 |
**kwargs): |
|
|
114 |
|
|
|
115 |
super(SegNet_Conv2D_Block, self).__init__(**kwargs) |
|
|
116 |
|
|
|
117 |
for _ in range(num_conv_layers): |
|
|
118 |
self.add(tfkl.Conv2D(num_channels, |
|
|
119 |
kernel_size, |
|
|
120 |
padding='same', |
|
|
121 |
use_bias=use_bias, |
|
|
122 |
data_format=data_format)) |
|
|
123 |
if use_batchnorm: |
|
|
124 |
self.add(tfkl.BatchNormalization(axis=-1, |
|
|
125 |
momentum=0.95, |
|
|
126 |
epsilon=0.001)) |
|
|
127 |
self.add(tfkl.Activation(nonlinearity)) |
|
|
128 |
|
|
|
129 |
if use_dropout: |
|
|
130 |
if use_spatial_dropout: |
|
|
131 |
self.add(tfkl.SpatialDropout2D(rate=dropout_rate)) |
|
|
132 |
else: |
|
|
133 |
self.add(tfkl.Dropout(rate=dropout_rate)) |
|
|
134 |
|
|
|
135 |
self.add(tfkl.MaxPool2D(pool_size)) |
|
|
136 |
|
|
|
137 |
def call(self, x, training=False): |
|
|
138 |
|
|
|
139 |
output = super(SegNet_Conv2D_Block, self).call(x, training=training) |
|
|
140 |
return output |
|
|
141 |
|
|
|
142 |
|
|
|
143 |
class segnet_Up_Conv2D_block(tf.keras.Sequential): |
|
|
144 |
|
|
|
145 |
def __init__(self, |
|
|
146 |
num_channels, |
|
|
147 |
num_conv_layers, |
|
|
148 |
kernel_size=(3, 3), |
|
|
149 |
upsampling_size=(2, 2), |
|
|
150 |
nonlinearity='relu', |
|
|
151 |
use_batchnorm=True, |
|
|
152 |
use_transpose=False, |
|
|
153 |
use_bias=True, |
|
|
154 |
strides=(2, 2), |
|
|
155 |
data_format='channels_last', |
|
|
156 |
**kwargs): |
|
|
157 |
|
|
|
158 |
super(segnet_Up_Conv2D_block, self).__init__(**kwargs) |
|
|
159 |
|
|
|
160 |
if use_transpose: |
|
|
161 |
self.add(tfkl.Conv2DTranspose(num_channels, |
|
|
162 |
kernel_size, |
|
|
163 |
padding='same', |
|
|
164 |
strides=strides, |
|
|
165 |
data_format=data_format)) |
|
|
166 |
else: |
|
|
167 |
self.add(tf.keras.layers.UpSampling2D(size=upsampling_size)) |
|
|
168 |
|
|
|
169 |
for _ in range(num_conv_layers): |
|
|
170 |
self.add(tfkl.Conv2D(num_channels, |
|
|
171 |
kernel_size, |
|
|
172 |
padding='same', |
|
|
173 |
data_format=data_format)) |
|
|
174 |
if use_batchnorm: |
|
|
175 |
self.add(tfkl.BatchNormalization(axis=-1, |
|
|
176 |
momentum=0.95, |
|
|
177 |
epsilon=0.001)) |
|
|
178 |
self.add(tfkl.Activation(nonlinearity)) |
|
|
179 |
|
|
|
180 |
def call(self, x, training=False): |
|
|
181 |
|
|
|
182 |
output = super(segnet_Up_Conv2D_block, self).call(x, training=training) |
|
|
183 |
return output |