[d6d24a]: / Segmentation / model / Hundred_Layer_Tiramisu.py

Download this file

275 lines (217 with data), 10.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import tensorflow as tf
import tensorflow.keras.layers as tfkl
'''The implementation of the 100 layer Tiramisu Network follows
directly from the publication found at https://arxiv.org/pdf/1611.09326.pdf'''
class Hundred_Layer_Tiramisu(tf.keras.Model):
def __init__(self,
growth_rate,
layers_per_block,
num_channels,
num_classes,
kernel_size=(3, 3),
pool_size=(2, 2),
nonlinearity='relu',
dropout_rate=0.2,
strides=(2, 2),
padding='same',
use_dropout=False,
use_concat=True,
**kwargs):
super(Hundred_Layer_Tiramisu, self).__init__(**kwargs)
self.growth_rate = growth_rate
self.layers_per_block = layers_per_block
self.num_channels = num_channels
self.num_classes = num_classes
self.kernel_size = kernel_size
self.pool_size = pool_size
self.nonlinearity = nonlinearity
self.dropout_rate = dropout_rate
self.strides = strides
self.padding = padding
self.use_dropout = use_dropout
self.use_concat = use_concat
self.conv_3x3 = tfkl.Conv2D(self.num_channels,
kernel_size,
padding='same')
self.dense_block_list = []
self.up_transition_list = []
self.conv_1x1 = tfkl.Conv2D(filters=num_classes,
kernel_size=(1, 1),
padding='same')
layers_counter = 0
num_filters = num_channels
print(len(self.layers_per_block))
for idx in range(0, len(self.layers_per_block)):
print(idx)
num_conv_layers = layers_per_block[idx]
self.dense_block_list.append(dense_layer(num_conv_layers,
growth_rate,
kernel_size,
dropout_rate,
nonlinearity,
use_dropout=False,
use_concat=True))
layers_counter = layers_counter + num_conv_layers
num_filters = num_channels + layers_counter * growth_rate
if idx != len(self.layers_per_block)-1:
self.dense_block_list.append(down_transition(num_channels=num_filters,
kernel_size=(1, 1),
pool_size=(2, 2),
dropout_rate=0.2,
nonlinearity='relu',
use_dropout=False))
for idx in range(len(self.layers_per_block) - 1, 0, -1):
num_conv_layers = layers_per_block[idx - 1]
num_filters = num_conv_layers * growth_rate
self.up_transition_list.append(up_transition(num_conv_layers,
num_channels=num_filters,
growth_rate=self.growth_rate,
kernel_size=(3, 3),
strides=(2, 2),
padding='same',
use_concat=False))
def call(self, inputs, training=False):
blocks = []
x = self.conv_3x3(inputs)
for i, down in enumerate(self.dense_block_list):
x = down(x, training=training)
if i % 2 == 0 and i != len(self.dense_block_list)-1:
blocks.append(x)
for i, up in enumerate(self.up_transition_list):
x = up(x, blocks[- i-1], training=training)
x = self.conv_1x1(x)
if self.num_classes == 1:
output = tfkl.Activation('sigmoid')(x)
else:
output = tfkl.Activation('softmax')(x)
return output
'''------------------------------------------------------------------'''
class conv_layer(tf.keras.Sequential):
def __init__(self,
num_channels,
kernel_size=(3, 3),
dropout_rate=0.2,
nonlinearity='relu',
use_dropout=False,
**kwargs):
super(conv_layer, self).__init__(**kwargs)
self.num_channels = num_channels
self.kernel_size = kernel_size
self.dropout_rate = dropout_rate
self.nonlinearity = nonlinearity
self.use_dropout = use_dropout
self.add(tfkl.BatchNormalization(axis=-1,
momentum=0.95,
epsilon=0.001))
self.add(tfkl.Activation(self.nonlinearity))
self.add(tfkl.Conv2D(self.num_channels,
self.kernel_size,
padding='same',
activation=None,
use_bias=True))
if use_dropout:
self.add(tfkl.Dropout(rate=self.dropout_rate))
def call(self, inputs, training=False):
outputs = super(conv_layer, self).call(inputs, training=training)
return outputs
'''-----------------------------------------------------------------'''
class dense_layer(tf.keras.Sequential):
def __init__(self,
num_conv_layers,
growth_rate,
kernel_size=(3, 3),
dropout_rate=0.2,
nonlinearity='relu',
use_dropout=False,
use_concat=True,
**kwargs):
super(dense_layer, self).__init__(**kwargs)
self.num_conv_layers = num_conv_layers
self.growth_rate = growth_rate
self.kernel_size = kernel_size
self.dropout_rate = dropout_rate
self.nonlinearity = nonlinearity
self.use_dropout = use_dropout
self.use_concat = use_concat
self.conv_list = []
for layer in range(num_conv_layers):
self.conv_list.append(conv_layer(num_channels=self.growth_rate,
kernel_size=self.kernel_size,
dropout_rate=self.dropout_rate,
nonlinearity=self.nonlinearity,
use_dropout=self.use_dropout))
def call(self, inputs, training=False):
dense_output = []
x = inputs
for i, conv in enumerate(self.conv_list):
out = conv(x, training=training)
x = tfkl.concatenate([x, out], axis=-1)
dense_output.append(out)
x = tfkl.concatenate(dense_output, axis=-1)
if self.use_concat:
x = tfkl.concatenate([x, inputs], axis=-1)
outputs = x
return outputs
'''-----------------------------------------------------------------'''
class down_transition(tf.keras.Sequential):
def __init__(self,
num_channels,
kernel_size=(1, 1),
pool_size=(2, 2),
dropout_rate=0.2,
nonlinearity='relu',
use_dropout=False,
**kwargs):
super(down_transition, self).__init__(**kwargs)
self.kernel_size = kernel_size
self.pool_size = pool_size
self.dropout_rate = dropout_rate
self.nonlinearity = nonlinearity
self.use_dropout = use_dropout
self.add(tfkl.BatchNormalization(axis=-1,
momentum=0.95,
epsilon=0.001))
self.add(tfkl.Activation(nonlinearity))
self.add(tfkl.Conv2D(num_channels, kernel_size, padding='same'))
if use_dropout:
self.add(tfkl.Dropout(rate=self.dropout_rate))
self.add(tfkl.MaxPooling2D(pool_size))
def call(self, inputs, training=False):
outputs = super(down_transition, self).call(inputs, training=training)
return outputs
'''-----------------------------------------------------------------'''
class up_transition(tf.keras.Model):
def __init__(self,
num_conv_layers,
num_channels,
growth_rate,
kernel_size=(3, 3),
strides=(2, 2),
padding='same',
nonlinearity='relu',
use_concat=False,
**kwargs):
super(up_transition, self).__init__(**kwargs)
self.num_conv_layers = num_conv_layers
self.num_channels = num_channels
self.growth_rate = growth_rate
self.kernel_size = kernel_size
self.strides = strides
self.padding = padding
self.nonlinearity = nonlinearity
self.use_concat = use_concat
self.up_conv = tfkl.Conv2DTranspose(num_channels,
kernel_size,
strides,
padding)
self.dense_block = dense_layer(num_conv_layers,
growth_rate,
kernel_size,
strides,
nonlinearity,
use_concat=self.use_concat)
def call(self, inputs, bridge, training=False):
up = self.up_conv(inputs, training=training)
db_up = self.dense_block(up, training=training)
c_up = tfkl.concatenate([db_up, bridge], axis=3)
return c_up