[242173]: / man / ich_predict.Rd

Download this file

76 lines (62 with data), 2.0 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ich_predict.R
\name{ich_predict}
\alias{ich_predict}
\title{Predict ICH Images}
\usage{
ich_predict(
df,
nim,
model = c("rf", "logistic", "big_rf"),
verbose = TRUE,
native = TRUE,
native_img = NULL,
transformlist = NULL,
interpolator = NULL,
native_thresh = 0.5,
shiny = FALSE,
model_list = NULL,
smoothed_cutoffs = NULL,
outfile = NULL,
...
)
}
\arguments{
\item{df}{\code{\link{data.frame}} of predictors. If \code{multiplier}
column does not exist, then \code{\link{ich_candidate_voxels}} will
be called}
\item{nim}{object of class \code{\link{nifti}}, from
\code{\link{make_predictors}}}
\item{model}{model to use for prediction,
either the random forest (rf) or logistic}
\item{verbose}{Print diagnostic output}
\item{native}{Should native-space predictions be given?}
\item{native_img}{object of class \code{\link{nifti}}, which
is the dimensions of the native image}
\item{transformlist}{Transforms list for the transformations back to native space.
NOTE: these will be inverted.}
\item{interpolator}{Interpolator for the transformation back to native space}
\item{native_thresh}{Threshold for re-thresholding binary mask after
interpolation}
\item{shiny}{Should shiny progress be called?}
\item{model_list}{list of model objects, used mainly for retraining
but only expert use.}
\item{smoothed_cutoffs}{A list with an element
\code{mod.dice.coef}, only expert use.}
\item{outfile}{filename for output file.
We write the smoothed, thresholded image. If \code{native = TRUE},
then the file will be native space, otherwise in registered
space}
\item{...}{Additional options passsed to \code{\link{ich_preprocess}}}
}
\value{
List of output registered and native space
prediction/probability images
}
\description{
This function will take the data.frame of predictors and
predict the ICH voxels from the model chosen.
}
\seealso{
\code{\link{ich_candidate_voxels}}
}