|
a/README.md |
|
b/README.md |
1 |
|
1 |
--- |
|
|
2 |
output: github_document |
|
|
3 |
--- |
|
|
4 |
|
2 |
<!-- README.md is generated from README.Rmd. Please edit that file --> |
5 |
<!-- README.md is generated from README.Rmd. Please edit that file --> |
3 |
|
6 |
|
4 |
ichseg <img src="man/figures/logo.png" align="right" height="139" /> |
7 |
```{r setup, include = FALSE} |
5 |
==================================================================== |
8 |
knitr::opts_chunk$set( |
6 |
|
9 |
collapse = TRUE, |
|
|
10 |
comment = "", |
|
|
11 |
fig.path = "man/figures/README-" |
|
|
12 |
) |
|
|
13 |
``` |
|
|
14 |
|
|
|
15 |
|
7 |
<!-- badges: start --> |
16 |
<!-- badges: start -->
|
8 |
|
|
|
9 |
[](https://travis-ci.com/muschellij2/ichseg)
|
10 |
status](https://travis-ci.com/muschellij2/ichseg.svg?branch=master)](https://travis-ci.com/muschellij2/ichseg) |
|
|
11 |
[](https://ci.appveyor.com/project/muschellij2/ichseg)
|
12 |
status](https://ci.appveyor.com/api/projects/status/github/muschellij2/ichseg?branch=master&svg=true)](https://ci.appveyor.com/project/muschellij2/ichseg) |
|
|
13 |
<!-- badges: end --> |
19 |
<!-- badges: end --> |
14 |
|
20 |
|
15 |
The goal of `ichseg` is to perform preprocessing on computed tomography |
21 |
The goal of `ichseg` is to perform preprocessing on computed tomography (CT) scans, including skull stripping. Computes predictors of intracerebral hemorrhage (ICH) and uses these to predict a binary hemorrhage mask from the data. |
16 |
(CT) scans, including skull stripping. Computes predictors of |
22 |
|
17 |
intracerebral hemorrhage (ICH) and uses these to predict a binary |
23 |
## Citing |
18 |
hemorrhage mask from the data. |
24 |
|
19 |
|
|
|
20 |
Citing |
|
|
21 |
------ |
|
|
22 |
|
|
|
23 |
To cite `ichseg`, you can run: |
25 |
To cite `ichseg`, you can run: |
24 |
|
26 |
|
25 |
citation("ichseg") |
27 |
```{r} |
26 |
|
28 |
citation("ichseg") |
27 |
Muschelli J, Sweeney EM, Ullman NL, Vespa P, Hanley DF, Crainiceanu CM |
29 |
``` |
28 |
(2017). "PItcHPERFeCT: Primary Intracranial Hemorrhage Probability |
30 |
|
29 |
Estimation using Random Forests on CT." _NeuroImage: Clinical_, *14*, |
31 |
## Installation |
30 |
379-390. |
32 |
|
31 |
|
33 |
You can install `ichseg` from github with: |
32 |
A BibTeX entry for LaTeX users is |
34 |
|
33 |
|
35 |
```{r gh-installation, eval = FALSE} |
34 |
@Article{muschelli2017pitchperfect, |
36 |
# install.packages("devtools")
|
35 |
title = {{PItcHPERFeCT}: Primary Intracranial Hemorrhage Probability Estimation using Random Forests on {CT}}, |
|
|
36 |
author = {John Muschelli and Elizabeth M Sweeney and Natalie L Ullman and Paul Vespa and Daniel F Hanley and Ciprian M Crainiceanu}, |
|
|
37 |
journal = {NeuroImage: Clinical}, |
|
|
38 |
volume = {14}, |
|
|
39 |
pages = {379--390}, |
|
|
40 |
year = {2017}, |
|
|
41 |
publisher = {Elsevier}, |
|
|
42 |
} |
|
|
43 |
|
|
|
44 |
Installation |
|
|
45 |
------------ |
|
|
46 |
|
|
|
47 |
You can install `ichseg` from github with: |
|
|
48 |
|
|
|
49 |
# install.packages("devtools") |
|
|
50 |
devtools::install_github("muschellij2/ichseg") |
37 |
devtools::install_github("muschellij2/ichseg") |
51 |
|
38 |
``` |
52 |
Requirements |
39 |
|
53 |
------------ |
40 |
|
54 |
|
41 |
## Requirements |
|
|
42 |
|
55 |
These functions require a working installation of FSL |
43 |
These functions require a working installation of FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation), which can be installed via Neurodebian as well: http://neuro.debian.net/pkgs/fsl-complete.html. |
56 |
(<a href="https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation" class="uri">https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation</a>), |
44 |
|
57 |
which can be installed via Neurodebian as well: |
45 |
## Prediction |
58 |
<a href="http://neuro.debian.net/pkgs/fsl-complete.html" class="uri">http://neuro.debian.net/pkgs/fsl-complete.html</a>. |
46 |
|
59 |
|
|
|
60 |
Prediction |
|
|
61 |
---------- |
|
|
62 |
|
|
|
63 |
In order to segment ICH from an image, use the `ich_segment` function: |
47 |
In order to segment ICH from an image, use the `ich_segment` function: |
64 |
|
48 |
|
65 |
ichseg::ich_segment(img = "/path/to/ct/scan") |
49 |
```{r, eval = FALSE} |
|
|
50 |
ichseg::ich_segment(img = "/path/to/ct/scan") |
|
|
51 |
``` |
|
|
52 |
|