Diff of /man/ich_predict.Rd [000000] .. [242173]

Switch to unified view

a b/man/ich_predict.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/ich_predict.R
3
\name{ich_predict}
4
\alias{ich_predict}
5
\title{Predict ICH Images}
6
\usage{
7
ich_predict(
8
  df,
9
  nim,
10
  model = c("rf", "logistic", "big_rf"),
11
  verbose = TRUE,
12
  native = TRUE,
13
  native_img = NULL,
14
  transformlist = NULL,
15
  interpolator = NULL,
16
  native_thresh = 0.5,
17
  shiny = FALSE,
18
  model_list = NULL,
19
  smoothed_cutoffs = NULL,
20
  outfile = NULL,
21
  ...
22
)
23
}
24
\arguments{
25
\item{df}{\code{\link{data.frame}} of predictors.  If \code{multiplier}
26
column does not exist, then \code{\link{ich_candidate_voxels}} will
27
be called}
28
29
\item{nim}{object of class \code{\link{nifti}}, from
30
\code{\link{make_predictors}}}
31
32
\item{model}{model to use for prediction,
33
either the random forest (rf) or logistic}
34
35
\item{verbose}{Print diagnostic output}
36
37
\item{native}{Should native-space predictions be given?}
38
39
\item{native_img}{object of class \code{\link{nifti}}, which
40
is the dimensions of the native image}
41
42
\item{transformlist}{Transforms list for the transformations back to native space.
43
NOTE: these will be inverted.}
44
45
\item{interpolator}{Interpolator for the transformation back to native space}
46
47
\item{native_thresh}{Threshold for re-thresholding binary mask after
48
interpolation}
49
50
\item{shiny}{Should shiny progress be called?}
51
52
\item{model_list}{list of model objects, used mainly for retraining
53
but only expert use.}
54
55
\item{smoothed_cutoffs}{A list with an element
56
\code{mod.dice.coef}, only expert use.}
57
58
\item{outfile}{filename for output file.
59
We write the smoothed, thresholded image.  If \code{native = TRUE},
60
then the file will be native space, otherwise in registered
61
space}
62
63
\item{...}{Additional options passsed to \code{\link{ich_preprocess}}}
64
}
65
\value{
66
List of output registered and native space
67
prediction/probability images
68
}
69
\description{
70
This function will take the data.frame of predictors and
71
predict the ICH voxels from the model chosen.
72
}
73
\seealso{
74
\code{\link{ich_candidate_voxels}}
75
}