|
a |
|
b/man/deepbleed.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/deepbleed.R |
|
|
3 |
\name{download_deepbleed_model} |
|
|
4 |
\alias{download_deepbleed_model} |
|
|
5 |
\alias{load_deepbleed_model} |
|
|
6 |
\alias{predict_deepbleed} |
|
|
7 |
\alias{register_deepbleed} |
|
|
8 |
\title{DeepBleed Model} |
|
|
9 |
\usage{ |
|
|
10 |
download_deepbleed_model(outdir = NULL) |
|
|
11 |
|
|
|
12 |
load_deepbleed_model(outdir = NULL) |
|
|
13 |
|
|
|
14 |
predict_deepbleed(image, mask = NULL, verbose = TRUE, ..., outdir = NULL) |
|
|
15 |
|
|
|
16 |
register_deepbleed( |
|
|
17 |
image, |
|
|
18 |
mask = NULL, |
|
|
19 |
verbose = TRUE, |
|
|
20 |
interpolator = "Linear", |
|
|
21 |
... |
|
|
22 |
) |
|
|
23 |
} |
|
|
24 |
\arguments{ |
|
|
25 |
\item{outdir}{Output directory for `DeepBleed` model} |
|
|
26 |
|
|
|
27 |
\item{image}{image to segment using `DeepBleed` model} |
|
|
28 |
|
|
|
29 |
\item{mask}{brain mask image} |
|
|
30 |
|
|
|
31 |
\item{verbose}{print diagnostic messages} |
|
|
32 |
|
|
|
33 |
\item{...}{additional arguments to send to |
|
|
34 |
\code{\link{CT_Skull_Stripper_mask}}} |
|
|
35 |
|
|
|
36 |
\item{interpolator}{interpolation done for antsApplyTransforms} |
|
|
37 |
} |
|
|
38 |
\value{ |
|
|
39 |
A list of the output images and predictions. |
|
|
40 |
} |
|
|
41 |
\description{ |
|
|
42 |
DeepBleed Model |
|
|
43 |
} |
|
|
44 |
\note{ |
|
|
45 |
\url{https://github.com/muschellij2/deepbleed} |
|
|
46 |
} |
|
|
47 |
\examples{ |
|
|
48 |
\donttest{ |
|
|
49 |
destfile = file.path(tempdir(), "01.tar.xz") |
|
|
50 |
dl = download.file( |
|
|
51 |
"https://archive.data.jhu.edu/api/access/datafile/1311?gbrecs=true", |
|
|
52 |
destfile = destfile) |
|
|
53 |
res = untar(tarfile = destfile, exdir = tempdir()) |
|
|
54 |
fname = file.path(tempdir(), "01", "BRAIN_1_Anonymized.nii.gz") |
|
|
55 |
mask = file.path(tempdir(), "01", "BRAIN_1_Anonymized_Mask.nii.gz") |
|
|
56 |
tdir = tempfile() |
|
|
57 |
dir.create(tdir) |
|
|
58 |
download_deepbleed_model(outdir = tdir) |
|
|
59 |
mod = load_deepbleed_model(outdir = tdir) |
|
|
60 |
predict_deepbleed(fname, mask = mask, outdir = tdir) |
|
|
61 |
} |
|
|
62 |
} |