|
a |
|
b/inst/deepbleed/preprocess/extract.py |
|
|
1 |
# @author: msharrock |
|
|
2 |
# version: 0.0.1 |
|
|
3 |
|
|
|
4 |
''' |
|
|
5 |
Extraction methods for DeepBleed |
|
|
6 |
|
|
|
7 |
''' |
|
|
8 |
|
|
|
9 |
import os |
|
|
10 |
import nibabel as nib |
|
|
11 |
from fsl.wrappers import fslmaths, bet |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
def brain(image): |
|
|
15 |
|
|
|
16 |
''' |
|
|
17 |
Brain Extraction with FSL |
|
|
18 |
|
|
|
19 |
Params: |
|
|
20 |
- image: nifti object, scan to brain extract |
|
|
21 |
Output: |
|
|
22 |
- brain_image: nifti object, extracted brain |
|
|
23 |
''' |
|
|
24 |
affine = image.affine |
|
|
25 |
header = image.header |
|
|
26 |
tmpfile = 'tmpfile.nii.gz' |
|
|
27 |
image.to_filename(tmpfile) |
|
|
28 |
|
|
|
29 |
# FSL calls |
|
|
30 |
mask = fslmaths(image).thr('0.000000').uthr('100.000000').bin().fillh().run() |
|
|
31 |
fslmaths(image).mas(mask).run(tmpfile) |
|
|
32 |
bet(tmpfile, tmpfile, fracintensity = 0.01) |
|
|
33 |
mask = fslmaths(tmpfile).bin().fillh().run() |
|
|
34 |
image = fslmaths(image).mas(mask).run() |
|
|
35 |
image = nib.Nifti1Image(image.get_data(), affine, header) |
|
|
36 |
os.remove(tmpfile) |
|
|
37 |
|
|
|
38 |
return image |
|
|
39 |
|