|
a |
|
b/R/make_predictors.R |
|
|
1 |
#' @title Make CT Predictors |
|
|
2 |
#' |
|
|
3 |
#' @description Create a set of predictors for ICH segmentation |
|
|
4 |
#' for CT |
|
|
5 |
#' @param img Filename of image intensities |
|
|
6 |
#' @param mask Filename of brain mask |
|
|
7 |
#' @param roi Filename of ROI for Y |
|
|
8 |
#' @param nvoxels Voxel neighborhood |
|
|
9 |
#' @param moments Moments of neighborhood to take |
|
|
10 |
#' @param center Center the moments |
|
|
11 |
#' @param lthresh Lower threshold for neighborhood setting |
|
|
12 |
#' @param uthresh Upper threshold for neighborhood setting |
|
|
13 |
#' @param sigmas Sigma values for Gaussian smoothed images (in mm) |
|
|
14 |
#' @param save_imgs Logical to save all images that are created as |
|
|
15 |
#' predictors |
|
|
16 |
#' @param outdir Output directory of saved images, needs to be set |
|
|
17 |
#' if \code{save_imgs = TRUE} |
|
|
18 |
#' @param stub Basename to write image names if \code{save_imgs = TRUE} |
|
|
19 |
#' @param overwrite If \code{save_imgs} is \code{TRUE}, |
|
|
20 |
#' then should |
|
|
21 |
#' the files be overwritten? If not, then files will be read |
|
|
22 |
#' instead instead of code being re-run. |
|
|
23 |
#' @param template.file Template to register to (CT Template) |
|
|
24 |
#' @param mean.img Mean image in template space for z-scoring |
|
|
25 |
#' @param sd.img SD image in template space for z-scoring |
|
|
26 |
#' @param zscore.typeofTransform type of transform for z-scoring |
|
|
27 |
#' @param zscore.interpolator type of interpolator for z-scoring |
|
|
28 |
#' @param flip.typeofTransform type of transform for flipped difference |
|
|
29 |
#' @param flip.interpolator type of interpolator for flipped difference |
|
|
30 |
#' @param low_thresh Threshold for forcing values to zero |
|
|
31 |
#' @param verbose Logical indicator if output messages should be |
|
|
32 |
#' printed |
|
|
33 |
#' @param shiny Should shiny progress be called? |
|
|
34 |
#' @param erode_mask Should the brain mask be eroded? |
|
|
35 |
#' @param ... options passed to \code{\link{get_neighbors}} |
|
|
36 |
#' @importFrom neurobase readnii checkimg zscore_img finite_img |
|
|
37 |
#' @importFrom fslr fslerode fsl_smooth |
|
|
38 |
#' @importFrom oro.nifti zero_trans cal_img voxdim pixdim convert.datatype convert.bitpix |
|
|
39 |
#' @importFrom extrantsr zscore_template otropos reg_flip perona_malik |
|
|
40 |
#' @importFrom stats sd quantile predict complete.cases |
|
|
41 |
#' @export |
|
|
42 |
#' @return List of a data.frame of Predictors and set of |
|
|
43 |
#' indices to |
|
|
44 |
#' keep in mask and an empty nifti object for plotting. |
|
|
45 |
#' Also the number of voxels of the roi that were not in the |
|
|
46 |
#' mask |
|
|
47 |
make_predictors <- function(img, mask, roi = NULL, |
|
|
48 |
nvoxels = 1, moments = 1:4, |
|
|
49 |
center = c(FALSE, TRUE, TRUE, TRUE), |
|
|
50 |
lthresh = 40, uthresh = 80, |
|
|
51 |
sigmas = c(5, 10, 20), |
|
|
52 |
save_imgs = TRUE, |
|
|
53 |
outdir = NULL, |
|
|
54 |
stub = NULL, |
|
|
55 |
overwrite = FALSE, |
|
|
56 |
template.file = system.file( |
|
|
57 |
"scct_unsmooth_SS_0.01.nii.gz", |
|
|
58 |
package = "ichseg"), |
|
|
59 |
mean.img = system.file( |
|
|
60 |
"Mean_Image.nii.gz", |
|
|
61 |
package = "ichseg"), |
|
|
62 |
sd.img = system.file( |
|
|
63 |
"SD_Image.nii.gz", |
|
|
64 |
package = "ichseg"), |
|
|
65 |
zscore.typeofTransform = "SyN", |
|
|
66 |
zscore.interpolator = "Linear", |
|
|
67 |
flip.typeofTransform = "Affine", |
|
|
68 |
flip.interpolator = "LanczosWindowedSinc", |
|
|
69 |
low_thresh = 1e-13, |
|
|
70 |
verbose= TRUE, |
|
|
71 |
shiny = FALSE, |
|
|
72 |
erode_mask = TRUE, |
|
|
73 |
...) { |
|
|
74 |
make_fname = function(addstub){ |
|
|
75 |
fname = addstub |
|
|
76 |
fname = file.path(outdir, paste0(stub, "_", fname, ".nii.gz")) |
|
|
77 |
fname |
|
|
78 |
} |
|
|
79 |
|
|
|
80 |
write_img = function(arr, addstub){ |
|
|
81 |
fname = addstub |
|
|
82 |
fname = file.path(outdir, paste0(stub, "_", fname)) |
|
|
83 |
if ( !inherits( arr, "nifti")){ |
|
|
84 |
mom = nim |
|
|
85 |
mom@.Data = array(arr, dim = dim(mom)) |
|
|
86 |
} else { |
|
|
87 |
mom = arr |
|
|
88 |
} |
|
|
89 |
mom = cal_img(mom) |
|
|
90 |
mom = zero_trans(mom) |
|
|
91 |
mom = datatyper(mom, |
|
|
92 |
datatype = convert.datatype()$FLOAT32, |
|
|
93 |
bitpix = convert.bitpix()$FLOAT32) |
|
|
94 |
writenii(mom, filename = fname) |
|
|
95 |
} |
|
|
96 |
|
|
|
97 |
|
|
|
98 |
make_moment_list = function(){ |
|
|
99 |
mom.exist = sapply(moments, function(moment){ |
|
|
100 |
addstub = paste0("moment", moment) |
|
|
101 |
fname = make_fname(addstub) |
|
|
102 |
file.exists(fname) |
|
|
103 |
}) |
|
|
104 |
|
|
|
105 |
### if all data does not exist or rewrite - remake data |
|
|
106 |
if (!all(mom.exist) | overwrite) { |
|
|
107 |
msg = "# Running Local_Moment" |
|
|
108 |
if (verbose){ |
|
|
109 |
message(msg) |
|
|
110 |
} |
|
|
111 |
if (shiny) { |
|
|
112 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
113 |
} |
|
|
114 |
moms = local_moment( |
|
|
115 |
img, |
|
|
116 |
mask = mask, |
|
|
117 |
nvoxels = nvoxels, |
|
|
118 |
moment = moments, center = center, |
|
|
119 |
invert = FALSE, |
|
|
120 |
...) |
|
|
121 |
if (save_imgs) { |
|
|
122 |
for (imom in seq_along(moments)) { |
|
|
123 |
moment = moments[imom] |
|
|
124 |
addstub = paste0("moment", moment) |
|
|
125 |
fname = make_fname(addstub) |
|
|
126 |
mom.img = moms[[imom]] |
|
|
127 |
write_img(mom.img, addstub) |
|
|
128 |
} |
|
|
129 |
} |
|
|
130 |
} |
|
|
131 |
### if all data exists and not to rewrite - just read in |
|
|
132 |
if (all(mom.exist) & !overwrite) { |
|
|
133 |
moms = lapply(moments, function(moment){ |
|
|
134 |
addstub = paste0("moment", moment) |
|
|
135 |
fname = make_fname(addstub) |
|
|
136 |
mom.img = readnii(fname, reorient = FALSE) |
|
|
137 |
return(mom.img) |
|
|
138 |
}) |
|
|
139 |
} |
|
|
140 |
msg = "# Creating Moment Matrix" |
|
|
141 |
if (verbose) { |
|
|
142 |
message(msg) |
|
|
143 |
} |
|
|
144 |
if (shiny) { |
|
|
145 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
146 |
} |
|
|
147 |
mat = matrix(NA, |
|
|
148 |
ncol = length(moms), |
|
|
149 |
nrow = prod(dim(mask)) |
|
|
150 |
) |
|
|
151 |
for (imom in seq_along(moms)) { |
|
|
152 |
mat[, imom] = c(moms[[imom]]) |
|
|
153 |
} |
|
|
154 |
# moms = sapply(moms, c) |
|
|
155 |
rm(list = "moms"); gc(); gc(); |
|
|
156 |
colnames(mat) = paste0("moment", moments) |
|
|
157 |
mat = as.data.frame(mat) |
|
|
158 |
return(mat) |
|
|
159 |
} |
|
|
160 |
|
|
|
161 |
img.fname = checkimg(img) |
|
|
162 |
img = check_nifti(img) |
|
|
163 |
|
|
|
164 |
mask.fname = checkimg(mask) |
|
|
165 |
orig.mask = mask = check_nifti(mask) |
|
|
166 |
|
|
|
167 |
if (!is.null(roi)) { |
|
|
168 |
# roi.fname = roi |
|
|
169 |
roi = check_nifti(roi) |
|
|
170 |
} |
|
|
171 |
|
|
|
172 |
# stopifnot(class(roi) == "character") |
|
|
173 |
# stopifnot(class(img) == "character") |
|
|
174 |
# stopifnot(class(mask) == "character") |
|
|
175 |
|
|
|
176 |
|
|
|
177 |
if (save_imgs){ |
|
|
178 |
stopifnot(!is.null(outdir)) |
|
|
179 |
stopifnot(!is.null(stub)) |
|
|
180 |
} |
|
|
181 |
if (is.null(outdir)){ |
|
|
182 |
outdir = tempdir() |
|
|
183 |
} |
|
|
184 |
if (is.null(stub)){ |
|
|
185 |
stub = nii.stub(img.fname, bn = TRUE) |
|
|
186 |
} |
|
|
187 |
|
|
|
188 |
msg = "# Reading Images" |
|
|
189 |
if (verbose) { |
|
|
190 |
message(msg) |
|
|
191 |
} |
|
|
192 |
if (shiny) { |
|
|
193 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
194 |
} |
|
|
195 |
# img = readnii(img.fname, reorient= FALSE) |
|
|
196 |
orig.img = img |
|
|
197 |
# stub = nii.stub(img.fname, bn=TRUE) |
|
|
198 |
|
|
|
199 |
nim = niftiarr(img, array(NA, dim = dim(orig.img))) |
|
|
200 |
nim = datatyper(nim, |
|
|
201 |
datatype = convert.datatype()$FLOAT32, |
|
|
202 |
bitpix = convert.bitpix()$FLOAT32) |
|
|
203 |
dimg = dim(nim) |
|
|
204 |
vdim = voxdim(nim) |
|
|
205 |
|
|
|
206 |
# if (is.null(roi)){ |
|
|
207 |
# roi = niftiarr(img, array(0, dim = dim(nim))) |
|
|
208 |
# } |
|
|
209 |
|
|
|
210 |
msg = "# Eroding Mask" |
|
|
211 |
addstub = "usemask" |
|
|
212 |
fname = make_fname(addstub) |
|
|
213 |
|
|
|
214 |
if (verbose) { |
|
|
215 |
message(msg) |
|
|
216 |
} |
|
|
217 |
if (shiny) { |
|
|
218 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
219 |
} |
|
|
220 |
|
|
|
221 |
if (file.exists(fname) & !overwrite){ |
|
|
222 |
mask = readnii(fname, reorient = FALSE) |
|
|
223 |
} else { |
|
|
224 |
if (erode_mask) { |
|
|
225 |
# erode the mask |
|
|
226 |
mask = fslerode(file = mask.fname, |
|
|
227 |
kopts = "-kernel box 3x3x1", |
|
|
228 |
reorient = FALSE, retimg = TRUE, |
|
|
229 |
verbose = verbose > 1) |
|
|
230 |
} else { |
|
|
231 |
mask = readnii(mask.fname) |
|
|
232 |
} |
|
|
233 |
#### may add this - think about it |
|
|
234 |
# mask = fslfill(mask, bin=TRUE, retimg = TRUE) |
|
|
235 |
mask = mask > 0 |
|
|
236 |
mask = datatyper(mask) |
|
|
237 |
if (save_imgs){ |
|
|
238 |
write_img(mask, addstub) |
|
|
239 |
} |
|
|
240 |
} |
|
|
241 |
|
|
|
242 |
if (sum(mask) == 0) { |
|
|
243 |
msg = paste0( |
|
|
244 |
"Eroded mask is empty! Something went wrong with eroding ", |
|
|
245 |
"or Skull stripping") |
|
|
246 |
stop(msg) |
|
|
247 |
} |
|
|
248 |
orig.masked.img = mask_img(orig.img, orig.mask) |
|
|
249 |
masked.img = mask_img(orig.img, mask) |
|
|
250 |
if (!is.null(roi)){ |
|
|
251 |
miss.roi = sum(mask == 0 & roi > 0 ) |
|
|
252 |
} else { |
|
|
253 |
miss.roi = NULL |
|
|
254 |
} |
|
|
255 |
|
|
|
256 |
|
|
|
257 |
keep.ind = which(mask > 0) |
|
|
258 |
|
|
|
259 |
msg = "# Getting Moments" |
|
|
260 |
if (verbose) { |
|
|
261 |
message(msg) |
|
|
262 |
} |
|
|
263 |
if (shiny) { |
|
|
264 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
265 |
} |
|
|
266 |
################################################ |
|
|
267 |
# Making Moment Images |
|
|
268 |
################################################ |
|
|
269 |
|
|
|
270 |
df = make_moment_list() |
|
|
271 |
########### |
|
|
272 |
# Creating Skew/Kurtosis |
|
|
273 |
########### |
|
|
274 |
df$skew = df$moment3/df$moment2 ^ {3/2} |
|
|
275 |
df$kurtosis = df$moment4/df$moment2 ^ {2} |
|
|
276 |
df$moment3 = df$moment4 = NULL |
|
|
277 |
|
|
|
278 |
########### |
|
|
279 |
# Writing Skew |
|
|
280 |
########### |
|
|
281 |
addstub = "skew" |
|
|
282 |
fname = make_fname(addstub) |
|
|
283 |
if (file.exists(fname) & !overwrite) { |
|
|
284 |
|
|
|
285 |
} else { |
|
|
286 |
skew = niftiarr(img, df$skew) |
|
|
287 |
if (save_imgs) { |
|
|
288 |
write_img(skew, addstub) |
|
|
289 |
} |
|
|
290 |
rm(list = c("skew")); gc(); gc(); |
|
|
291 |
} |
|
|
292 |
|
|
|
293 |
########### |
|
|
294 |
# Writing Kurtosis |
|
|
295 |
########### |
|
|
296 |
addstub = "kurtosis" |
|
|
297 |
fname = make_fname(addstub) |
|
|
298 |
if (file.exists(fname) & !overwrite) { |
|
|
299 |
|
|
|
300 |
} else { |
|
|
301 |
kurtosis = niftiarr(img, df$kurtosis) |
|
|
302 |
if (save_imgs) { |
|
|
303 |
write_img(kurtosis, addstub) |
|
|
304 |
} |
|
|
305 |
rm(list = c("kurtosis")); gc(); gc(); |
|
|
306 |
} |
|
|
307 |
|
|
|
308 |
################################################ |
|
|
309 |
# Making Percent threshold image |
|
|
310 |
################################################ |
|
|
311 |
msg = paste0("# Getting thresholded from ", |
|
|
312 |
lthresh, " to ", uthresh, "\n") |
|
|
313 |
if (verbose) { |
|
|
314 |
message(msg) |
|
|
315 |
} |
|
|
316 |
if (shiny) { |
|
|
317 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
318 |
} |
|
|
319 |
addstub = paste0("thresh_", lthresh, "_", uthresh) |
|
|
320 |
fname = make_fname(addstub) |
|
|
321 |
if (file.exists(fname) & !overwrite){ |
|
|
322 |
thresh_img = readnii(fname, reorient=FALSE) |
|
|
323 |
} else { |
|
|
324 |
thresh_img = niftiarr(img, img >= lthresh & img <= uthresh) |
|
|
325 |
if (save_imgs){ |
|
|
326 |
write_img(thresh_img, addstub) |
|
|
327 |
} |
|
|
328 |
} |
|
|
329 |
|
|
|
330 |
df$value = c(masked.img) |
|
|
331 |
df$thresh = c(thresh_img) |
|
|
332 |
|
|
|
333 |
cn = colnames(df) |
|
|
334 |
|
|
|
335 |
################################################ |
|
|
336 |
# Making Z-score Images |
|
|
337 |
################################################ |
|
|
338 |
msg = "# Getting Z-scored images" |
|
|
339 |
if (verbose) { |
|
|
340 |
message(msg) |
|
|
341 |
} |
|
|
342 |
if (shiny) { |
|
|
343 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
344 |
} |
|
|
345 |
zimgs = lapply(1:3, function(i){ |
|
|
346 |
addstub = paste0("zscore", i) |
|
|
347 |
fname = make_fname(addstub) |
|
|
348 |
if (file.exists(fname) & !overwrite){ |
|
|
349 |
img = readnii(fname, reorient=FALSE) |
|
|
350 |
} else { |
|
|
351 |
img = zscore_img(masked.img, mask = mask, margin = i) |
|
|
352 |
if (save_imgs){ |
|
|
353 |
write_img(img, addstub) |
|
|
354 |
} |
|
|
355 |
} |
|
|
356 |
return(img) |
|
|
357 |
}) |
|
|
358 |
zimgs = sapply(zimgs, c) |
|
|
359 |
colnames(zimgs) = paste0("zscore", 1:3) |
|
|
360 |
zimgs = as.data.frame(zimgs) |
|
|
361 |
for (i in 1:3) { |
|
|
362 |
df[, paste0("zscore", i)] = zimgs[, paste0("zscore", i)] |
|
|
363 |
} |
|
|
364 |
rm(list = c("zimgs")); gc(); gc(); |
|
|
365 |
|
|
|
366 |
# wmean2 = function(img, mask, trim = 0.2){ |
|
|
367 |
# x = img[ mask == 1] |
|
|
368 |
# mn = psych::winsor.mean(x, trim = trim) |
|
|
369 |
# s = psych::winsor.sd(x, trim = trim) |
|
|
370 |
# z = (x-mn)/s |
|
|
371 |
# img[mask == 1] = z |
|
|
372 |
# img[mask == 0] = 0 |
|
|
373 |
# img = cal_img(img) |
|
|
374 |
# return(img) |
|
|
375 |
# } |
|
|
376 |
|
|
|
377 |
wmean = function(img, mask, trim = 0.2){ |
|
|
378 |
x = img[ mask == 1 ] |
|
|
379 |
stopifnot(length(trim) == 1) |
|
|
380 |
stopifnot(trim > 0) |
|
|
381 |
stopifnot(trim <= 0.5) |
|
|
382 |
qtrim <- quantile(x, |
|
|
383 |
c(trim, 0.5, 1 - trim), |
|
|
384 |
na.rm = TRUE) |
|
|
385 |
xbot <- qtrim[1] |
|
|
386 |
xtop <- qtrim[3] |
|
|
387 |
|
|
|
388 |
if (trim < 0.5) { |
|
|
389 |
x[x < xbot] <- xbot |
|
|
390 |
x[x > xtop] <- xtop |
|
|
391 |
} else { |
|
|
392 |
x[!is.na(x)] <- qtrim[2] |
|
|
393 |
} |
|
|
394 |
|
|
|
395 |
mn = mean(x, na.rm=TRUE) |
|
|
396 |
s = sd(x, na.rm=TRUE) |
|
|
397 |
img = (img-mn)/s |
|
|
398 |
img = mask_img(img, mask) |
|
|
399 |
img = finite_img(img) |
|
|
400 |
return(img) |
|
|
401 |
} |
|
|
402 |
|
|
|
403 |
msg = "# Getting Winsorized Image" |
|
|
404 |
if (verbose) { |
|
|
405 |
message(msg) |
|
|
406 |
} |
|
|
407 |
if (shiny) { |
|
|
408 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
409 |
} |
|
|
410 |
addstub = paste0("win_z") |
|
|
411 |
fname = make_fname(addstub) |
|
|
412 |
if (file.exists(fname) & !overwrite){ |
|
|
413 |
wmean_img = readnii(fname, reorient=FALSE) |
|
|
414 |
} else { |
|
|
415 |
wmean_img = wmean(orig.img, mask = mask, trim = 0.2) |
|
|
416 |
if (save_imgs){ |
|
|
417 |
write_img(wmean_img, addstub) |
|
|
418 |
} |
|
|
419 |
} |
|
|
420 |
df$win_z = c(wmean_img) |
|
|
421 |
rm(list = c("wmean_img")); gc(); gc(); |
|
|
422 |
|
|
|
423 |
################################################ |
|
|
424 |
# Making Percent threshold image |
|
|
425 |
################################################ |
|
|
426 |
msg = paste0("# Getting Percent thresholded from ", |
|
|
427 |
lthresh, " to ", uthresh) |
|
|
428 |
if (verbose) { |
|
|
429 |
message(msg) |
|
|
430 |
} |
|
|
431 |
if (shiny) { |
|
|
432 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
433 |
} |
|
|
434 |
addstub = paste0("pct_thresh_", lthresh, "_", uthresh) |
|
|
435 |
fname = make_fname(addstub) |
|
|
436 |
if (file.exists(fname) & !overwrite){ |
|
|
437 |
pct_thresh = readnii(fname, reorient=FALSE) |
|
|
438 |
} else { |
|
|
439 |
pct_thresh = local_moment(thresh_img, mask = mask, |
|
|
440 |
nvoxels = nvoxels, |
|
|
441 |
moment = 1, center = FALSE, |
|
|
442 |
...)[[1]] |
|
|
443 |
if (save_imgs){ |
|
|
444 |
write_img(pct_thresh, addstub) |
|
|
445 |
} |
|
|
446 |
} |
|
|
447 |
|
|
|
448 |
df$pct_thresh = c(pct_thresh) |
|
|
449 |
rm(list = c("thresh_img", "pct_thresh")); gc(); gc(); |
|
|
450 |
|
|
|
451 |
|
|
|
452 |
################################################ |
|
|
453 |
# Making Probability |
|
|
454 |
################################################ |
|
|
455 |
msg = "# Getting Top Probability Segmentation from Atropos" |
|
|
456 |
if (verbose) { |
|
|
457 |
message(msg) |
|
|
458 |
} |
|
|
459 |
if (shiny) { |
|
|
460 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
461 |
} |
|
|
462 |
addstub = paste0("prob_img") |
|
|
463 |
fname = make_fname(addstub) |
|
|
464 |
if (file.exists(fname) & !overwrite){ |
|
|
465 |
prob_img = readnii(fname, reorient = FALSE) |
|
|
466 |
} else { |
|
|
467 |
window.masked.img = window_img(masked.img, window = c(0, 100)) |
|
|
468 |
seg = otropos( window.masked.img, i = "KMeans[4]", verbose = verbose > 1) |
|
|
469 |
prob_img = seg$probabilityimages[[3]] + seg$probabilityimages[[4]] |
|
|
470 |
rm(list = c("seg")); gc(); gc(); |
|
|
471 |
if (save_imgs){ |
|
|
472 |
write_img(prob_img, addstub) |
|
|
473 |
} |
|
|
474 |
} |
|
|
475 |
|
|
|
476 |
df$prob_img = c(prob_img) |
|
|
477 |
rm(list = c("prob_img")); gc(); gc(); |
|
|
478 |
|
|
|
479 |
|
|
|
480 |
################################################ |
|
|
481 |
# Making Percent that are 0 |
|
|
482 |
################################################ |
|
|
483 |
msg = "# Getting Percent 0" |
|
|
484 |
if (verbose) { |
|
|
485 |
message(msg) |
|
|
486 |
} |
|
|
487 |
if (shiny) { |
|
|
488 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
489 |
} |
|
|
490 |
###### changed to masked.img |
|
|
491 |
thresh_0 = niftiarr(masked.img, masked.img == 0) |
|
|
492 |
addstub = "pct_zero_neighbor" |
|
|
493 |
fname = make_fname(addstub) |
|
|
494 |
if (file.exists(fname) & !overwrite){ |
|
|
495 |
pct_zero_neighbor = readnii(fname, reorient=FALSE) |
|
|
496 |
} else { |
|
|
497 |
pct_zero_neighbor = local_moment(thresh_0, mask = NULL, |
|
|
498 |
nvoxels = nvoxels, |
|
|
499 |
moment = 1, center = FALSE, |
|
|
500 |
...)[[1]] |
|
|
501 |
pct_zero_neighbor = mask_img(pct_zero_neighbor, mask) |
|
|
502 |
if (save_imgs){ |
|
|
503 |
write_img(pct_zero_neighbor, addstub) |
|
|
504 |
} |
|
|
505 |
} |
|
|
506 |
df$pct_zero_neighbor = c(pct_zero_neighbor) |
|
|
507 |
rm(list = c("pct_zero_neighbor", "thresh_0")); gc(); gc(); |
|
|
508 |
|
|
|
509 |
msg = "# Getting Any 0 Neighbors" |
|
|
510 |
if (verbose) { |
|
|
511 |
message(msg) |
|
|
512 |
} |
|
|
513 |
if (shiny) { |
|
|
514 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
515 |
} |
|
|
516 |
addstub = "any_zero_neighbor" |
|
|
517 |
df$any_zero_neighbor = (df$pct_zero_neighbor > 0) *1 |
|
|
518 |
|
|
|
519 |
################################################ |
|
|
520 |
# Making Distance to centroid |
|
|
521 |
################################################ |
|
|
522 |
msg = "# Getting Distance to centroid" |
|
|
523 |
if (verbose) { |
|
|
524 |
message(msg) |
|
|
525 |
} |
|
|
526 |
if (shiny) { |
|
|
527 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
528 |
} |
|
|
529 |
addstub = "dist_centroid" |
|
|
530 |
fname = make_fname(addstub) |
|
|
531 |
if (file.exists(fname) & !overwrite){ |
|
|
532 |
dist.img = readnii(fname, reorient=FALSE) |
|
|
533 |
} else { |
|
|
534 |
centroid = t(which(mask > 0, arr.ind=TRUE)) |
|
|
535 |
all.ind = expand.grid(lapply(dimg, seq)) |
|
|
536 |
colnames(all.ind) = paste0("dim", seq(length(dimg))) |
|
|
537 |
all.ind = t(as.matrix(all.ind)) |
|
|
538 |
all.ind = all.ind * vdim |
|
|
539 |
centroid = centroid * vdim |
|
|
540 |
dist.img = t(all.ind - rowMeans(centroid)) |
|
|
541 |
rm(list = c("all.ind")); gc(); gc(); |
|
|
542 |
|
|
|
543 |
dist.img = sqrt(rowSums(dist.img^2)) |
|
|
544 |
dist.img = niftiarr(img, array(dist.img, dim =dimg)) |
|
|
545 |
dist.img = mask_img(dist.img, mask) |
|
|
546 |
dist.img = datatyper(dist.img, |
|
|
547 |
datatype= convert.datatype()$FLOAT32, |
|
|
548 |
bitpix= convert.bitpix()$FLOAT32) |
|
|
549 |
if (save_imgs){ |
|
|
550 |
write_img(dist.img, addstub) |
|
|
551 |
} |
|
|
552 |
} |
|
|
553 |
df$dist_centroid = c(dist.img) |
|
|
554 |
rm(list = c("dist.img")); gc(); gc(); |
|
|
555 |
|
|
|
556 |
|
|
|
557 |
################################################ |
|
|
558 |
# Making Distance to centroid |
|
|
559 |
################################################ |
|
|
560 |
msg = "# Perona Malik Smoother" |
|
|
561 |
if (verbose) { |
|
|
562 |
message(msg) |
|
|
563 |
} |
|
|
564 |
if (shiny) { |
|
|
565 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
566 |
} |
|
|
567 |
addstub = "perona_malik" |
|
|
568 |
fname = make_fname(addstub) |
|
|
569 |
if (file.exists(fname) & !overwrite) { |
|
|
570 |
dist.img = readnii(fname, reorient = FALSE) |
|
|
571 |
} else { |
|
|
572 |
pm_img = extrantsr::perona_malik( |
|
|
573 |
masked.img, n_iter = 10, |
|
|
574 |
conductance = 5) |
|
|
575 |
if (save_imgs) { |
|
|
576 |
write_img(pm_img, addstub) |
|
|
577 |
} |
|
|
578 |
rm(list = c("seg")); gc(); gc(); |
|
|
579 |
} |
|
|
580 |
df$perona_malik = c(pm_img) |
|
|
581 |
rm(list = c("pm_img")); gc(); gc(); |
|
|
582 |
|
|
|
583 |
################################################ |
|
|
584 |
# Making 10mm and 20mm smoother |
|
|
585 |
################################################ |
|
|
586 |
make_smooth_img = function(sigma){ |
|
|
587 |
msg = paste0("# Getting Smooth ", sigma) |
|
|
588 |
if (verbose) { |
|
|
589 |
message(msg) |
|
|
590 |
} |
|
|
591 |
if (shiny) { |
|
|
592 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
593 |
} |
|
|
594 |
addstub = paste0("smooth", sigma) |
|
|
595 |
if (save_imgs){ |
|
|
596 |
fname = make_fname(addstub) |
|
|
597 |
} else { |
|
|
598 |
fname = tempfile() |
|
|
599 |
if (file.exists(fname)){ |
|
|
600 |
file.remove(fname) |
|
|
601 |
} |
|
|
602 |
} |
|
|
603 |
if (file.exists(fname) & !overwrite) { |
|
|
604 |
smooth.img = readnii(fname, reorient = FALSE) |
|
|
605 |
} else { |
|
|
606 |
smooth.mask = fslr::fsl_smooth( |
|
|
607 |
file = mask, |
|
|
608 |
sigma = sigma, |
|
|
609 |
mask = NULL, |
|
|
610 |
smooth_mask = FALSE, |
|
|
611 |
verbose = verbose > 1) |
|
|
612 |
smooth.img = fslsmooth(img.fname, sigma=sigma, |
|
|
613 |
mask = mask, retimg = TRUE, |
|
|
614 |
outfile = fname, |
|
|
615 |
verbose = verbose > 1) |
|
|
616 |
} |
|
|
617 |
return(c(smooth.img)) |
|
|
618 |
} |
|
|
619 |
# df$smooth2 = make_smooth_img(sigma=2) |
|
|
620 |
# df$smooth5 = make_smooth_img(sigma=5) |
|
|
621 |
smooths = sapply(sigmas, make_smooth_img) |
|
|
622 |
colnames(smooths) = paste0("smooth", sigmas) |
|
|
623 |
df = cbind(df, smooths) |
|
|
624 |
rm(list = c("smooths")); gc(); gc(); |
|
|
625 |
|
|
|
626 |
|
|
|
627 |
|
|
|
628 |
msg = "# Z-score to template" |
|
|
629 |
if (verbose) { |
|
|
630 |
message(msg) |
|
|
631 |
} |
|
|
632 |
if (shiny) { |
|
|
633 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
634 |
} |
|
|
635 |
addstub = "zscore_template" |
|
|
636 |
fname = make_fname(addstub) |
|
|
637 |
if (file.exists(fname) & !overwrite) { |
|
|
638 |
zscore = readnii(fname, reorient = FALSE) |
|
|
639 |
} else { |
|
|
640 |
zscore = extrantsr::zscore_template(img = orig.masked.img, |
|
|
641 |
template.file = template.file, |
|
|
642 |
mean.img = mean.img, |
|
|
643 |
sd.img = sd.img, |
|
|
644 |
typeofTransform = zscore.typeofTransform, |
|
|
645 |
interpolator = zscore.interpolator, |
|
|
646 |
verbose = verbose > 1) |
|
|
647 |
if (save_imgs){ |
|
|
648 |
write_img(zscore, addstub) |
|
|
649 |
} |
|
|
650 |
} |
|
|
651 |
df$zscore_template = c(zscore) |
|
|
652 |
rm(list = c("zscore")); gc(); gc(); |
|
|
653 |
|
|
|
654 |
msg = "# Flipped Difference" |
|
|
655 |
if (verbose) { |
|
|
656 |
message(msg) |
|
|
657 |
} |
|
|
658 |
if (shiny) { |
|
|
659 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
660 |
} |
|
|
661 |
addstub = "flipped_value" |
|
|
662 |
fname = make_fname(addstub) |
|
|
663 |
if (file.exists(fname) & !overwrite) { |
|
|
664 |
flipped_value = readnii(fname, reorient=FALSE) |
|
|
665 |
} else { |
|
|
666 |
flipper = extrantsr::reg_flip( |
|
|
667 |
t1 = orig.masked.img, |
|
|
668 |
mask = orig.mask, |
|
|
669 |
template.file = template.file, |
|
|
670 |
typeofTransform = flip.typeofTransform, |
|
|
671 |
interpolator = flip.interpolator, |
|
|
672 |
verbose = verbose > 1) |
|
|
673 |
flipper = flipper$t1 |
|
|
674 |
########################## |
|
|
675 |
# Take difference |
|
|
676 |
########################## |
|
|
677 |
flipped_value = orig.masked.img - flipper |
|
|
678 |
rm(list = c("flipper")); gc(); gc(); |
|
|
679 |
if (save_imgs) { |
|
|
680 |
write_img(flipped_value, addstub) |
|
|
681 |
} |
|
|
682 |
} |
|
|
683 |
df$flipped_value = c(flipped_value) |
|
|
684 |
rm(list = c("flipped_value")); gc(); gc(); |
|
|
685 |
|
|
|
686 |
msg = "# Thresholding small values" |
|
|
687 |
if (verbose) { |
|
|
688 |
message(msg) |
|
|
689 |
} |
|
|
690 |
if (shiny) { |
|
|
691 |
shiny::incProgress(message = msg, amount = 0.02) |
|
|
692 |
} |
|
|
693 |
|
|
|
694 |
|
|
|
695 |
for (icn in seq(ncol(df))) { |
|
|
696 |
x = df[, icn] |
|
|
697 |
if (!(class(x) %in% c("factor", "character"))) { |
|
|
698 |
x[ !is.finite(x) ] = 0 |
|
|
699 |
} |
|
|
700 |
df[, icn] = x |
|
|
701 |
} |
|
|
702 |
|
|
|
703 |
df = as.matrix(df) |
|
|
704 |
low = abs(df) < low_thresh |
|
|
705 |
df[ low ] = 0 |
|
|
706 |
|
|
|
707 |
df = data.frame(df, stringsAsFactors = FALSE) |
|
|
708 |
if (!is.null(roi)) { |
|
|
709 |
df$Y = c(roi) |
|
|
710 |
} else { |
|
|
711 |
df$Y = NA |
|
|
712 |
} |
|
|
713 |
df$mask = c(mask) |
|
|
714 |
|
|
|
715 |
|
|
|
716 |
return(list(df = df, keep.ind = keep.ind, nim = nim, |
|
|
717 |
miss.roi = miss.roi)) |
|
|
718 |
} |
|
|
719 |
|
|
|
720 |
|