
HippUnfold Documentation

HippUnfold Development Team

Nov 26, 2022

GETTING STARTED

1 Installation 3
1.1 Requirements . 3
1.2 Comparison of methods for running HippUnfold . 3

2 Running HippUnfold with Docker 7

3 Running HippUnfold with Singularity 11
3.1 Pre-requisities: . 11
3.2 First time setup . 11
3.3 Running an example . 12
3.4 Exploring different options . 13

4 Running HippUnfold with a Vagrant VM 15
4.1 Install VirtualBox and Vagrant . 15
4.2 Create a Vagrant Box . 15
4.3 Download the test dataset . 16
4.4 Download the HippUnfold container . 16
4.5 Run HippUnfold . 16

5 Command-line interface 17
5.1 HippUnfold Command-line interface . 17
5.2 Snakemake command-line interface . 21

6 Running HippUnfold on your data 39
6.1 Selecting the modality to use . 39
6.2 Selecting and excluding subjects to process . 39
6.3 Known limitations for BIDS parsing . 40
6.4 Parsing Non-BIDS datasets with custom paths . 41

7 Specialized scans 43
7.1 Case 1: super high resolution . 43
7.2 Case 2: one ex-vivo hemisphere . 44

8 Frequently asked questions 45
8.1 Why is the workflow stopping at the run_inference step? . 45
8.2 Why do I get the error, No input images found for T1w, or No input images found for T2w 46

9 Pipeline Details 47
9.1 Overall workflow . 47
9.2 Pre-processing . 48
9.3 U-net segmentation . 53

i

9.4 Template-based shape injection . 53
9.5 Laplace & equivolume coordinates . 54
9.6 Subfields processing . 55
9.7 Generating warp files . 55
9.8 Surface processing . 56
9.9 Additional steps . 56

10 Algorithmic details 57
10.1 Hippocampal unfolding . 57

11 Output Files 63
11.1 anat . 63
11.2 surf . 64
11.3 coords . 68
11.4 warps . 68
11.5 Additional Files . 69

12 Visualization 71
12.1 Freeview (volumes and surfaces) . 71
12.2 HippUnfold Toolbox . 72
12.3 ITK-SNAP (volumes) . 72
12.4 Connectome Workbench (surfaces) . 72

13 Contributing to Hippunfold 73
13.1 Set-up your development environment: . 73
13.2 Running code format quality checking and fixing: . 73
13.3 Dry-run testing your workflow: . 74
13.4 Instructions for Compute Canada . 74
13.5 Deep learning nnU-net model files . 76
13.6 Overriding Singularity cache directories . 77

ii

HippUnfold Documentation

This tool aims to automatically model the topological folding structure of the human hippocampus, and computationally
unfold the hippocampus to segment subfields and generate hippocampal and dentate gyrus surfaces.

This is especially useful for:

• Visualization

• Topologically-constrained intersubject registration

• Parcellation (ie. registration to an unfolded atlas)

• Morphometry (eg. Thickness, Surface Area, Curvature, and Gyrification measures)

The overall workflow can be summarized in the following steps:

1. Pre-processing MRI images including non-uniformity correction, resampling to 0.3mm isotropic subvolumes,
registration and cropping to coronal-oblique subvolumes around each hippocampus

2. Automatic segmentation of hippocampal tissues and surrounding structures via deep convolutional neural net-
work U-net (nnU-net), models available for T1w, T2w, hippocampal b500 dwi, and neonatal T1w, and post-
processing with fluid label-label registration to a high-resolution average template

3. Imposing of coordinates across the anterior-posterior and proximal-distal dimensions of hippocampal grey matter
via solving Laplace’s equation, and using an equivolume solution for laminar coordinates

4. Generating transformations between native and unfolded spaces using scattered interpolation on the hippocampus
and dentate gyrus coordinates separately

5. Applying these transformations to generate surfaces meshes of the hippocampus and dentate gyrus, and extraction
of morphological surface-based features including thickness, curvature, and gyrification index, sampled at the
midthickness surface, and mapping subfield labels from the histological BigBrain atlas of the hippocampus

6. Generating high-resolution volumetric segmentations of the subfields using the same transformations and volu-
metric representations of the coordinates.

GETTING STARTED 1

HippUnfold Documentation

Full Documentation: here

Additional toolbox for plotting, mapping fMRI, DWI or other data, and manipulating surfaces here

Relevant papers:

• DeKraker J, Haast RAM, Yousif MD, Karat B, Köhler S, Khan AR. HippUnfold: Automated hip-
pocampal unfolding, morphometry, and subfield segmentation. bioRxiv 2021.12.03.471134; doi:
10.1101/2021.12.03.471134 link

• DeKraker J, Ferko KM, Lau JC, Köhler S, Khan AR. Unfolding the hippocampus: An intrinsic coordinate
system for subfield segmentations and quantitative mapping. Neuroimage. 2018 Feb 15;167:408-418. doi:
10.1016/j.neuroimage.2017.11.054. Epub 2017 Nov 23. PMID: 29175494. link

• DeKraker J, Lau JC, Ferko KM, Khan AR, Köhler S. Hippocampal subfields revealed through unfolding and
unsupervised clustering of laminar and morphological features in 3D BigBrain. Neuroimage. 2020 Feb
1;206:116328. doi: 10.1016/j.neuroimage.2019.116328. Epub 2019 Nov 1. PMID: 31682982. link

• DeKraker J, Köhler S, Khan AR. Surface-based hippocampal subfield segmentation. Trends Neurosci. 2021
Nov;44(11):856-863. doi: 10.1016/j.tins.2021.06.005. Epub 2021 Jul 22. PMID: 34304910. link

2 GETTING STARTED

https://hippunfold.readthedocs.io/en/latest/?badge=latest
https://github.com/jordandekraker/hippunfold_toolbox
https://www.biorxiv.org/content/10.1101/2021.12.03.471134v1
https://pubmed.ncbi.nlm.nih.gov/29175494/
https://pubmed.ncbi.nlm.nih.gov/31682982/
https://pubmed.ncbi.nlm.nih.gov/34304910/

CHAPTER

ONE

INSTALLATION

BIDS App for Hippocampal AutoTop (automated hippocampal unfolding and subfield segmentation)

1.1 Requirements

• Docker (Intel Mac/Windows/Linux) or Singularity (Linux)

• For those wishing to contribute or modify the code, pip install or poetry install are also available
(Linux), but will still require singularity to handle some dependencies. See Contributing to HippUnfold.

• GPU not required

• Note: Apple M1 is currently not supported. We don’t have a Docker arm64 container yet, and hippunfold is
unusably slow with the emulated amd64 container.

1.1.1 Notes:

• Inputs to Hippunfold should typically be a BIDS dataset including T1w images or T2w images. Higher-resolution
data are preferred (<= 0.8mm) but the pipeline will still work with 1mm T1w images. See Tutorials.

• Other 3D imaging modalities (eg. ex-vivo MRI, 3D histology, etc.) can be used, but may require manual tissue
segmentation as the current workflow relies on U-net segmentation trained only on common MRI modalities.

1.2 Comparison of methods for running HippUnfold

There are several different ways of running HippUnfold. In order of increasing complexity/flexibility, we have:

1. CBRAIN Web-based Platform

2. Singularity Container on Linux

3. Docker Container on Windows/Mac (Intel)/Linux

4. Python Environment with Singularity Dependencies

3

https://hippunfold.readthedocs.io/en/latest/contributing/contributing.html
https://hippunfold.readthedocs.io/en/latest/tutorials/standardBIDS.html

HippUnfold Documentation

1.2.1 CBRAIN Web-based Platform

HippUnfold is available on the CBRAIN platform, a web-based platform for batch high-performance computing that
is free for researchers.

Pros:

• No software installation required

• Fully point and click interface (no CLI)

• Can perform batch-processing

Cons:

• Must upload data for processing

• Limited command-line options exposed

• Cannot edit code

1.2.2 Docker on Windows/Mac (Intel)/Linux

The HippUnfold BIDS App is available on a DockerHub as versioned releases and development branches.

Pros:

• Compatible with non-Linux systems

• All dependencies+models in a single container

Cons:

• Typically not possible on shared machines

• Cannot use Snakemake cluster execution profiles

• Cannot edit code

1.2.3 Singularity Container

The same docker container can also be used with Singularity (now Apptainer). Instructions can be found below.

4 Chapter 1. Installation

https://github.com/aces/cbrain/wiki

HippUnfold Documentation

Pros:

• All dependencies+models in a single container

• Container stored as a single file (.sif)

Cons:

• Compatible on shared systems with Singularity installed

• Cannot use Snakemake cluster execution profiles

• Cannot edit code

1.2.4 Python Environment with Singularity Dependencies

Instructions for this can be found in the Contributing documentation page.

Pros:

• Complete flexibility to modify code

• External (Non-Python) dependencies as Singularity containers

Cons:

• Must use Python virtual environment

• Only compatible on Linux systems with Singularity for external dependencies

1.2. Comparison of methods for running HippUnfold 5

HippUnfold Documentation

6 Chapter 1. Installation

CHAPTER

TWO

RUNNING HIPPUNFOLD WITH DOCKER

Note: These instructions assume you have Docker installed already on your system.

Download and extract a single-subject BIDS dataset for this test:

wget https://www.dropbox.com/s/mdbmpmmq6fi8sk0/hippunfold_test_data.tar
tar -xvf hippunfold_test_data.tar

This will create a ds002168/ folder with a single subject, that has a both T1w and T2w images.

ds002168/
dataset_description.json
README.md
sub-1425

anat
sub-1425_T1w.json
sub-1425_T1w.nii.gz
sub-1425_T2w.json
sub-1425_T2w.nii.gz

2 directories, 6 files

Pull the container:

docker pull khanlab/hippunfold:latest

Run HippUnfold without any arguments to print the short help:

docker run -it --rm \
khanlab/hippunfold:latest

Use the -h option to get a detailed help listing:

docker run -it --rm \
khanlab/hippunfold:latest \
-h

Note that all the Snakemake command-line options are also available in HippUnfold, and can be listed with
--help-snakemake:

docker run -it --rm \
khanlab/hippunfold:latest \
--help-snakemake

7

HippUnfold Documentation

Now let’s run it on the test dataset. The --modality flag is a required argument, and describes what image we use
for segmentation. Here we will use the T1w image. We will also use the --dry-run/-n option to just print out what
would run, without actually running anything.

docker run -it --rm \
-v ds002168:/bids:ro \
-v ds002168_hippunfold:/output \
khanlab/hippunfold:latest \
/bids /output participant --modality T1w -n

For those not familiar with Docker, the first three lines of this example are generic Docker arguments to ensure it is
run with the safest options and has permission to access your input and output directories The fourth line specifies the
HippUnfold Docker container, and the fifth line contains the required arguments for HippUnfold, after which you can
additionally specify optional arguments. You may want to familiarize yourself with Docker options, and an overview
of HippUnfold arguments is provided in the Command line interface documentation section.

The first three arguments to HippUnfold (as with any BIDS App) are the input folder, the output folder, and then the
analysis level. The participant analysis level is used in HippUnfold for performing the segmentation, unfolding, and
any participant-level processing. The group analysis is used to combine subfield volumes across subjects into a single
tsv file.

When you run the above command, a long listing will print out, describing all the rules that will be run. This is a long
listing, and you can better appreciate it with the less tool. We can also have the shell command used for each rule
printed to screen using the -p Snakemake option:

docker run -it --rm \
-v ds002168:/bids:ro \
-v ds002168_hippunfold:/output \
khanlab/hippunfold:latest \
/bids /output participant --modality T1w -np | less

Now, to actually run the workflow, we need to specify how many cores to use and leave out the dry-run option. The
Snakemake --cores option tells HippUnfold how many cores to use. Using --cores 8 means that HippUnfold will
only make use of 8 cores at most. Generally speaking you should use --cores all, so it can make maximal use of
all the CPU cores it has access to on your system. This is especially useful if you are running multiple subjects.

Running the following command (hippunfold on a single subject) may take ~30 minutes if you have 8 cores, shorter if
you have more cores, but could be much longer (several hours) if you only have a single core.

docker run -it --rm \
-v ds002168:/bids:ro \
-v ds002168_hippunfold:/output \
khanlab/hippunfold:latest \
/bids /output participant --modality T1w -p --cores all

After this completes, you should have a ds002168_hippunfold folder with outputs for the one subject.

If you alternatively want to run HippUnfold using a different modality, e.g. the high-resolution T2w image in the BIDS
test dataset, you can use the --modality T2w option. In this case, since the T2w image in the test dataset has a limited
FOV, we should also make use of the --t1-reg-template command-line option, which will make use of the T1w
image for template registration, since a limited FOV T2w template does not exist.

docker run -it --rm \
-v ds002168:/bids:ro \
-v ds002168_hippunfold_t2w:/output \

(continues on next page)

8 Chapter 2. Running HippUnfold with Docker

https://docs.docker.com/engine/reference/run/
https://hippunfold.readthedocs.io/en/latest/usage/cli.html

HippUnfold Documentation

(continued from previous page)

khanlab/hippunfold:latest \
/bids /output participant --modality T2w --t1-reg-template -p --cores all

Note that if you run with a different modality, you should use a separate output folder, since some of the files would be
overwritten if not.

9

HippUnfold Documentation

10 Chapter 2. Running HippUnfold with Docker

CHAPTER

THREE

RUNNING HIPPUNFOLD WITH SINGULARITY

3.1 Pre-requisities:

1. Singularity or Apptainer is installed on your system. For more info, see the detailed apptainer install instructions.

2. The following command-line tools are installed:

• wget

• tar

3. Sufficient disk-space

• in your /tmp folder (>30GB) to build the container (not needed for dropbox download)

• in your working folder to store the container (~15GB)

• for HippUnfold outputs (~4GB per subject)

4. Sufficient CPU and memory - the more you have, the faster it will run, but we recommend at least 8 CPU cores
and 16GB memory.

3.2 First time setup

Pull the container. This can be done from dockerhub, but this requires a large amount of disk space in your /tmp folder,
since it has to convert from a docker container to a singularity container. To avoid this, we provide a Dropbox link to
the singularity container itself:

wget https://www.dropbox.com/s/jtf6zyy0u8sc2k6/khanlab_hippunfold_v1.2.0.sif

Run HippUnfold without any arguments to print the short help:

singularity run -e khanlab_hippunfold_v1.2.0.sif

Use the -h option to get a detailed help listing:

singularity run -e khanlab_hippunfold_v1.2.0.sif -h

Note that all the Snakemake command-line options are also available in HippUnfold, and can be listed with
--help-snakemake:

singularity run -e khanlab_hippunfold_v1.2.0.sif --help-snakemake

11

https://apptainer.org/docs/admin/main/installation.html#install-from-pre-built-packages

HippUnfold Documentation

If you really need to pull the container from docker hub, you can use the following command, but beware, it is more
prone to errors and will take up lots of system resources (e.g. ~70GB of free disk space):

singularity pull khanlab_hippunfold_v1.2.0.sif docker://khanlab/hippunfold:v1.2.0

Note: If you encounter any errors pulling the container from dockerhub, it may be because you are running out of disk
space in your cache folders. Note, you can change these locations by setting environment variables, however, using a
network file system for the folders may result in poor performance and/or errors e.g.:

export SINGULARITY_CACHEDIR=/YOURDIR/.cache/singularity

3.3 Running an example

Download and extract a single-subject BIDS dataset for this test:

wget https://www.dropbox.com/s/mdbmpmmq6fi8sk0/hippunfold_test_data.tar
tar -xvf hippunfold_test_data.tar

This will create a ds002168/ folder with a single subject, that has a both T1w and T2w images:

ds002168/
dataset_description.json
README.md
sub-1425

anat
sub-1425_T1w.json
sub-1425_T1w.nii.gz
sub-1425_T2w.json
sub-1425_T2w.nii.gz

2 directories, 6 files

Now let’s run HippUnfold.

singularity run -e khanlab_hippunfold_v1.2.0.sif ds002168 ds002168_hippunfold␣
→˓participant -n --modality T1w

Explanation:

Everything prior to the container (khanlab_hippunfold_v1.2.0.sif) are arguments to singularity, and after are to
HippUnfold itself. The first three arguments to HippUnfold (as with any BIDS App) are the input folder (ds002168),
the output folder (ds002168_hippunfold), and then the analysis level (participant). The participant analysis
level is used in HippUnfold for performing the segmentation, unfolding, and any participant-level processing. The
group analysis is used to combine subfield volumes across subjects into a single tsv file. The --modality flag is a
required argument, and describes what image we use for segmentation. Here we used the T1w image. We also used
the --dry-run/-n option to just print out what would run, without actually running anything.

When you run the above command, a long listing will print out, describing all the rules that will be run. This is a long
listing, and you can better appreciate it with the less tool. We can also have the shell command used for each rule
printed to screen using the -p Snakemake option:

singularity run -e khanlab_hippunfold_v1.2.0.sif ds002168 ds002168_hippunfold␣
→˓participant -np --modality T1w | less

12 Chapter 3. Running HippUnfold with Singularity

HippUnfold Documentation

Now, to actually run the workflow, we need to specify how many cores to use and leave out the dry-run option. The
Snakemake --cores option tells HippUnfold how many cores to use. Using --cores 8 means that HippUnfold will
only make use of 8 cores at most. Generally speaking you should use --cores all, so it can make maximal use of
all the CPU cores it has access to on your system. This is especially useful if you are running multiple subjects.

Running the following command (hippunfold on a single subject) may take ~30 minutes if you have 8 cores, shorter if
you have more cores, but could be much longer (several hours) if you only have a single core.

singularity run -e khanlab_hippunfold_v1.2.0.sif ds002168 ds002168_hippunfold␣
→˓participant -p --cores all --modality T1w

Note that you may need to adjust your Singularity options to ensure the container can read and write to yout input
and output directories, respectively. You can bind paths easily by setting an environment variable, e.g. if you have a
/project folder that contains your data, you can add it to the SINGULARITY_BINDPATH so it is available when you
are running a container:

export SINGULARITY_BINDPATH=/data:/data

After this completes, you should have a ds002168_hippunfold folder with outputs for the one subject.

3.4 Exploring different options

If you alternatively want to run HippUnfold using a different modality, e.g. the high-resolution T2w image in the BIDS
test dataset, you can use the --modality T2w option. In this case, since the T2w image in the test dataset has a limited
FOV, we should also make use of the --t1-reg-template command-line option, which will make use of the T1w
image for template registration, since a limited FOV T2w template does not exist.

singularity run -e khanlab_hippunfold_v1.2.0.sif ds002168 ds002168_hippunfold_t2w␣
→˓participant --modality T2w --t1-reg-template -p --cores all

Note that if you run with a different modality, you should use a separate output folder, since some of the files would be
overwritten if not.

3.4. Exploring different options 13

https://sylabs.io/guides/3.1/user-guide/cli/singularity_run.html

HippUnfold Documentation

14 Chapter 3. Running HippUnfold with Singularity

CHAPTER

FOUR

RUNNING HIPPUNFOLD WITH A VAGRANT VM

This option uses Vagrant to create a virtual machine that has Linux and Singularity installed. This allows you to use
Singularity to run HippUnfold from a clean environment, whether you are running Linux, Mac or Windows (since all
three are supported by Vagrant). Note: VirtualBox does the actual virtualization in this example, but Vagrant provides
an easy and reproducible way to create and connect to the VMs (as shown below).

4.1 Install VirtualBox and Vagrant

The example below uses Vagrant and VirtualBox installed on Ubuntu 20.04.

The Vagrant install instructions describe what you need to do to install on Mac, Windows or Linux.

Vagrant must use a provider for the actual virtualization. The instructions here assume you are using VirtualBox for
this, since it is free and easy to use, but in principle should work with any virtualization provider. The VirtualBox
downloads page can guide you through the process of installing it on your system (Mac, Windows, Linux supported).

4.2 Create a Vagrant Box

Once you have Vagrant and VirtualBox installed, the following screencast demonstrates how you can setup a Box with
Singularity pre-loaded on it. The main steps are to 1) create a Vagrantfile, 2) start the box using vagrant up, and 3)
connect to it using vagrant ssh.

Note: These screencasts are more than just videos, they are asciinema recordings – you can pause them and then
copy-paste text directly from the asciinema cast!

This is the Vagrantfile used in the video, for quick reference:

Vagrant.configure("2") do |config|
config.vm.box = "sylabs/singularity-3.7-ubuntu-bionic64"
config.vm.provider "virtualbox" do |vb|

vb.cpus = 8
vb.memory = "8096"

end
end

15

https://developer.hashicorp.com/vagrant/downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

HippUnfold Documentation

4.3 Download the test dataset

We are downloading the test dataset with the following command:

wget https://www.dropbox.com/s/mdbmpmmq6fi8sk0/hippunfold_test_data.tar

4.4 Download the HippUnfold container

We download the Singularity container for HippUnfold using Dropbox in this example:

wget https://www.dropbox.com/s/jtf6zyy0u8sc2k6/khanlab_hippunfold_v1.2.0.sif

Note, you can also pull/build the container from DockerHub:

singularity pull docker://khanlab/hippunfold:v1.2.0

4.5 Run HippUnfold

This demonstrates the basic HippUnfold options, and how to perform a dry-run:

Finally, we can run HippUnfold using all the cores:

16 Chapter 4. Running HippUnfold with a Vagrant VM

CHAPTER

FIVE

COMMAND-LINE INTERFACE

5.1 HippUnfold Command-line interface

The following can also be seen by entering hippunfold -h into your terminal.

These are all the required and optional arguments HippUnfold accepts in order to run flexibly on many different input
data types and with many options, but in most cases only the required arguments are needed.

Snakebids helps build BIDS Apps with Snakemake

usage: hippunfold [-h] [--pybidsdb-dir PYBIDSDB_DIR] [--reset-db] [--force-output] [--
→˓help-snakemake]

[--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
[--exclude_participant_label EXCLUDE_PARTICIPANT_LABEL [EXCLUDE_

→˓PARTICIPANT_LABEL ...]] [--version] --modality
{T1w,T2w,hippb500,segT1w,segT2w,cropseg} [--derivatives DERIVATIVES] [-

→˓-skip-preproc] [--skip_coreg]
[--skip-inject-template-labels] [--inject-template-smoothing-factor␣

→˓INJECT_TEMPLATE_SMOOTHING_FACTOR]
[--rigid-reg-template] [--no-reg-template] [--template {CITI168,dHCP}]␣

→˓[--t1-reg-template]
[--crop_native_box CROP_NATIVE_BOX]
[--atlas {bigbrain,magdeburg,freesurfer} [{bigbrain,magdeburg,

→˓freesurfer} ...]] [--generate_myelin_map]
[--use_gpu] [--nnunet_enable_tta] [--output_spaces {native,T1w} [

→˓{native,T1w} ...]]
[--output_density {0p5mm,1mm,2mm,unfoldiso} [{0p5mm,1mm,2mm,unfoldiso}␣

→˓...]] [--hemi {L,R} [{L,R} ...]]
[--laminar-coords-method {laplace,equivolume}] [--keep_work]
[--force-nnunet-model {T1w,T2w,T1T2w,b1000,trimodal,hippb500,

→˓neonateT1w}]
[--filter-T2w FILTER_T2W [FILTER_T2W ...]] [--filter-hippb500 FILTER_

→˓HIPPB500 [FILTER_HIPPB500 ...]]
[--filter-T1w FILTER_T1W [FILTER_T1W ...]] [--filter-seg FILTER_SEG␣

→˓[FILTER_SEG ...]]
[--filter-cropseg FILTER_CROPSEG [FILTER_CROPSEG ...]] [--wildcards-

→˓T2w WILDCARDS_T2W [WILDCARDS_T2W ...]]
[--wildcards-hippb500 WILDCARDS_HIPPB500 [WILDCARDS_HIPPB500 ...]]
[--wildcards-T1w WILDCARDS_T1W [WILDCARDS_T1W ...]] [--wildcards-seg␣

→˓WILDCARDS_SEG [WILDCARDS_SEG ...]]
(continues on next page)

17

HippUnfold Documentation

(continued from previous page)

[--wildcards-cropseg WILDCARDS_CROPSEG [WILDCARDS_CROPSEG ...]] [--
→˓path-T2w PATH_T2W]

[--path-hippb500 PATH_HIPPB500] [--path-T1w PATH_T1W] [--path-seg PATH_
→˓SEG] [--path-cropseg PATH_CROPSEG]

bids_dir output_dir {participant,group}

5.1.1 STANDARD

Standard options for all snakebids apps

--pybidsdb-dir, --pybidsdb_dir Optional path to directory of SQLite databasefile for PyBIDS. If direc-
tory is passed and folder exists, indexing is skipped. If reset_db is called, indexing
will persist

--reset-db, --reset_db Reindex existing PyBIDS SQLite database

Default: False

--force-output, --force_output Force output in a new directory that already has contents

Default: False

--help-snakemake, --help_snakemake Options to Snakemake can also be passed directly at the
command-line, use this to print Snakemake usage

5.1.2 SNAKEBIDS

Options for snakebids app

bids_dir The directory with the input dataset formatted according to the BIDS standard.

output_dir The directory where the output files should be stored. If you are running group
level analysis this folder should be prepopulated with the results of the participant
level analysis.

analysis_level Possible choices: participant, group

Level of the analysis that will be performed.

--participant_label, --participant-label The label(s) of the participant(s) that should be analyzed. The
label corresponds to sub-<participant_label> from the BIDS spec (so it does not
include “sub-“). If this parameter is not provided all subjects should be analyzed.
Multiple participants can be specified with a space separated list.

--exclude_participant_label, --exclude-participant-label The label(s) of the participant(s) that
should be excluded. The label corresponds to sub-<participant_label> from the
BIDS spec (so it does not include “sub-“). If this parameter is not provided all
subjects should be analyzed. Multiple participants can be specified with a space
separated list.

--version Print the version of HippUnfold

--modality Possible choices: T1w, T2w, hippb500, segT1w, segT2w, cropseg

Type of image to run hippunfold on. Modality prefixed with seg will import an
existing (manual) hippocampal tissue segmentation from that space, instead of
running neural network (default: None)

18 Chapter 5. Command-line interface

HippUnfold Documentation

--derivatives Path to the derivatives folder (e.g. for finding manual segs) (default: False)

Default: False

--skip-preproc, --skip_preproc Set this flag if your inputs (e.g. T2w, dwi) are already pre-processed
(default: False)

Default: False

--skip_coreg, --skip-coreg Set this flag if your inputs (e.g. T2w, dwi) are already registered to T1w
space (default: False)

Default: False

--skip-inject-template-labels, --skip_inject_template_labels Set this flag to skip post-processing
template injection into CNN segmentation. Note this will disable generation of
DG surfaces. (default: False)

Default: False

--inject-template-smoothing-factor, --inject_template_smoothing_factor Scales the default
smoothing sigma for gradient and warp in template shape injection. Using a
value higher than 1 will use result in a smoother warp, and greater capacity to
patch larger holes in segmentations. Try setting to 2 if nnunet segmentations
have large holes. Note: the better solution is to re-train network on the data you
are using (default: 1.0)

Default: 1.0

--rigid-reg-template, --rigid_reg_template Use rigid instead of affine for registration to template. Try
this if your images are reduced FOV (default: False)

Default: False

--no-reg-template, --no_reg_template Use if input data is already in space-CITI168 (default: False)

Default: False

--template Possible choices: CITI168, dHCP

Set the template to use for registration to coronal oblique. (default: “CITI168”)

Default: “CITI168”

--t1-reg-template, --t1_reg_template Use T1w to register to template space, instead of the segmenta-
tion modality. Note: this was the default behavior prior to v1.0.0. (default: False)

Default: False

--crop_native_box, --crop-native-box Sets the bounding box size for the crop native (e.g. cropT1w)
space). Make this larger if your hippocampi in crop{T1w,T2w} space are getting
cut-off (default: “256x256x256vox”)

Default: “256x256x256vox”

--atlas Possible choices: bigbrain, magdeburg, freesurfer

Select the atlas (unfolded space) to use for subfield labels. (default: [‘bigbrain’])

Default: [‘bigbrain’]

--generate_myelin_map, --generate-myelin-map Generate myelin map using T1w divided by T2w,
and map to surface with ribbon approach. Requires both T1w and T2w images to
be present. (default: False)

Default: False

5.1. HippUnfold Command-line interface 19

HippUnfold Documentation

--use_gpu, --use-gpu Enable gpu for inference by setting resource gpus=1 in run_inference rule (de-
fault: False)

Default: False

--nnunet_enable_tta, --nnunet-enable-tta Enable test-time augmentation for nnU-net inference,
slows down inference by 8x, but potentially increases accuracy (default: False)

Default: False

--output_spaces, --output-spaces Possible choices: native, T1w

Sets output spaces for results (default: [‘native’])

Default: [‘native’]

--output_density, --output-density Possible choices: 0p5mm, 1mm, 2mm, unfoldiso

Sets the output vertex density for results. Options correspond to approximate ver-
tex spacings of 0.5mm, 1.0mm, and 2.0mm, respectively, with the unfoldiso (32k
hipp) vertices legacy option having unequal vertex spacing. (default: [‘0p5mm’])

Default: [‘0p5mm’]

--hemi Possible choices: L, R

Hemisphere(s) to process (default: [‘L’, ‘R’])

Default: [‘L’, ‘R’]

--laminar-coords-method, --laminar_coords_method Possible choices: laplace, equivolume

Method to use for laminar coordinates. Equivolume uses equivolumetric layering
from Waehnert et al 2014 (Nighres implementation). (default: [‘equivolume’])

Default: [‘equivolume’]

--keep_work, --keep-work Keep work folder intact instead of archiving it for each subject (default:
False)

Default: False

--force-nnunet-model, --force_nnunet_model Possible choices: T1w, T2w, T1T2w, b1000, trimodal,
hippb500, neonateT1w

Force nnunet model to use (expert option). (default: False)

Default: False

5.1.3 BIDS FILTERS

Filters to customize PyBIDS get() as key=value pairs

--filter-T2w, --filter_T2w (default: suffix=T2w extension=.nii.gz datatype=anat invalid_filters=allow
space=None)

--filter-hippb500, --filter_hippb500 (default: suffix=b500 extension=.nii.gz invalid_filters=allow
datatype=dwi)

--filter-T1w, --filter_T1w (default: suffix=T1w extension=.nii.gz datatype=anat invalid_filters=allow
space=None)

--filter-seg, --filter_seg (default: suffix=dseg extension=.nii.gz datatype=anat invalid_filters=allow)

--filter-cropseg, --filter_cropseg (default: suffix=dseg extension=.nii.gz datatype=anat in-
valid_filters=allow)

20 Chapter 5. Command-line interface

HippUnfold Documentation

5.1.4 INPUT WILDCARDS

File path entities to use as wildcards in snakemake

--wildcards-T2w, --wildcards_T2w (default: subject session acquisition run)

--wildcards-hippb500, --wildcards_hippb500 (default: subject session)

--wildcards-T1w, --wildcards_T1w (default: subject session acquisition run)

--wildcards-seg, --wildcards_seg (default: subject session)

--wildcards-cropseg, --wildcards_cropseg (default: subject session hemi)

5.1.5 PATH OVERRIDE

Options for overriding BIDS by specifying absolute paths that include wildcards, e.g.:
/path/to/my_data/{subject}/t1.nii.gz

--path-T2w, --path_T2w

--path-hippb500, --path_hippb500

--path-T1w, --path_T1w

--path-seg, --path_seg

--path-cropseg, --path_cropseg

5.2 Snakemake command-line interface

In addition to the above command-line arguments, Snakemake arguments are also be passed at the hippunfold
command-line.

The most critical of these is the --cores or -c argument, which is a required argument for HippUnfold.

The complete list of Snakemake arguments are below, and mostly act to determine your environment and App be-
haviours. They will likely only need to be used for running in cloud environments or troubleshooting. These can be
listed from the command-line with hippunfold --help-snakemake.

Snakemake is a Python based language and execution environment for GNU Make-like workflows.

usage: snakemake [-h] [--dry-run] [--profile PROFILE] [--cache [RULE [RULE ...]]] [--
→˓snakefile FILE] [--cores [N]] [--jobs [N]]

[--local-cores N] [--resources [NAME=INT [NAME=INT ...]]] [--set-
→˓threads RULE=THREADS [RULE=THREADS ...]]

[--max-threads MAX_THREADS] [--set-resources RULE:RESOURCE=VALUE␣
→˓[RULE:RESOURCE=VALUE ...]]

[--set-scatter NAME=SCATTERITEMS [NAME=SCATTERITEMS ...]] [--default-
→˓resources [NAME=INT [NAME=INT ...]]]

[--preemption-default PREEMPTION_DEFAULT] [--preemptible-rules␣
→˓PREEMPTIBLE_RULES [PREEMPTIBLE_RULES ...]]

[--config [KEY=VALUE [KEY=VALUE ...]]] [--configfile FILE [FILE ...]] [-
→˓-envvars VARNAME [VARNAME ...]]

[--directory DIR] [--touch] [--keep-going]
[--rerun-triggers {mtime,params,input,software-env,code} [{mtime,params,

(continues on next page)

5.2. Snakemake command-line interface 21

https://snakemake.readthedocs.io/en/stable/

HippUnfold Documentation

(continued from previous page)

→˓input,software-env,code} ...]] [--force]
[--forceall] [--forcerun [TARGET [TARGET ...]]] [--prioritize TARGET␣

→˓[TARGET ...]] [--batch RULE=BATCH/BATCHES]
[--until TARGET [TARGET ...]] [--omit-from TARGET [TARGET ...]] [--

→˓rerun-incomplete] [--shadow-prefix DIR]
[--scheduler [{ilp,greedy}]] [--wms-monitor [WMS_MONITOR]] [--wms-

→˓monitor-arg [NAME=VALUE [NAME=VALUE ...]]]
[--scheduler-ilp-solver {PULP_CBC_CMD}] [--scheduler-solver-path␣

→˓SCHEDULER_SOLVER_PATH]
[--conda-base-path CONDA_BASE_PATH] [--no-subworkflows] [--groups␣

→˓GROUPS [GROUPS ...]]
[--group-components GROUP_COMPONENTS [GROUP_COMPONENTS ...]] [--report␣

→˓[FILE]] [--report-stylesheet CSSFILE]
[--draft-notebook TARGET] [--edit-notebook TARGET] [--notebook-listen␣

→˓IP:PORT] [--lint [{text,json}]]
[--generate-unit-tests [TESTPATH]] [--containerize] [--export-cwl FILE]␣

→˓[--list] [--list-target-rules] [--dag]
[--rulegraph] [--filegraph] [--d3dag] [--summary] [--detailed-summary]␣

→˓[--archive FILE]
[--cleanup-metadata FILE [FILE ...]] [--cleanup-shadow] [--skip-script-

→˓cleanup] [--unlock]
[--list-version-changes] [--list-code-changes] [--list-input-changes] [-

→˓-list-params-changes] [--list-untracked]
[--delete-all-output] [--delete-temp-output] [--bash-completion] [--

→˓keep-incomplete] [--drop-metadata]
[--version] [--reason] [--gui [PORT]] [--printshellcmds] [--debug-dag]␣

→˓[--stats FILE] [--nocolor]
[--quiet [{progress,rules,all} [{progress,rules,all} ...]]] [--print-

→˓compilation] [--verbose]
[--force-use-threads] [--allow-ambiguity] [--nolock] [--ignore-

→˓incomplete] [--max-inventory-time SECONDS]
[--latency-wait SECONDS] [--wait-for-files [FILE [FILE ...]]] [--wait-

→˓for-files-file FILE] [--notemp]
[--all-temp] [--keep-remote] [--keep-target-files] [--allowed-rules␣

→˓ALLOWED_RULES [ALLOWED_RULES ...]]
[--local-groupid LOCAL_GROUPID] [--max-jobs-per-second MAX_JOBS_PER_

→˓SECOND]
[--max-status-checks-per-second MAX_STATUS_CHECKS_PER_SECOND] [-T␣

→˓RETRIES] [--attempt ATTEMPT]
[--wrapper-prefix WRAPPER_PREFIX]
[--default-remote-provider {S3,GS,FTP,SFTP,S3Mocked,gfal,gridftp,iRODS,

→˓AzBlob,XRootD}]
[--default-remote-prefix DEFAULT_REMOTE_PREFIX] [--no-shared-fs] [--

→˓greediness GREEDINESS] [--no-hooks]
[--overwrite-shellcmd OVERWRITE_SHELLCMD] [--debug] [--runtime-profile␣

→˓FILE] [--mode {0,1,2}]
[--show-failed-logs] [--log-handler-script FILE] [--log-service {none,

→˓slack,wms}]
[--cluster CMD | --cluster-sync CMD | --drmaa [ARGS]] [--cluster-config␣

→˓FILE] [--immediate-submit]
[--jobscript SCRIPT] [--jobname NAME] [--cluster-status CLUSTER_STATUS]␣

→˓[--cluster-cancel CLUSTER_CANCEL]

(continues on next page)

22 Chapter 5. Command-line interface

HippUnfold Documentation

(continued from previous page)

[--cluster-cancel-nargs CLUSTER_CANCEL_NARGS] [--cluster-sidecar␣
→˓CLUSTER_SIDECAR] [--drmaa-log-dir DIR]

[--kubernetes [NAMESPACE]] [--container-image IMAGE] [--tibanna] [--
→˓tibanna-sfn TIBANNA_SFN]

[--precommand PRECOMMAND] [--tibanna-config TIBANNA_CONFIG [TIBANNA_
→˓CONFIG ...]] [--google-lifesciences]

[--google-lifesciences-regions GOOGLE_LIFESCIENCES_REGIONS [GOOGLE_
→˓LIFESCIENCES_REGIONS ...]]

[--google-lifesciences-location GOOGLE_LIFESCIENCES_LOCATION] [--google-
→˓lifesciences-keep-cache] [--tes URL]

[--use-conda] [--conda-not-block-search-path-envvars] [--list-conda-
→˓envs] [--conda-prefix DIR]

[--conda-cleanup-envs] [--conda-cleanup-pkgs [{tarballs,cache}]] [--
→˓conda-create-envs-only]

[--conda-frontend {conda,mamba}] [--use-singularity] [--singularity-
→˓prefix DIR] [--singularity-args ARGS]

[--use-envmodules]
[target [target ...]]

5.2.1 EXECUTION

target Targets to build. May be rules or files.

--dry-run, --dryrun, -n Do not execute anything, and display what would be done. If you have a very
large workflow, use –dry-run –quiet to just print a summary of the DAG of jobs.

Default: False

--profile Name of profile to use for configuring Snakemake. Snakemake will
search for a corresponding folder in /etc/xdg/xdg-ubuntu/snakemake
and /home/ROBARTS/alik/.config/snakemake. Alternatively, this can
be an absolute or relative path. The profile folder has to contain a file
‘config.yaml’. This file can be used to set default values for command
line options in YAML format. For example, ‘–cluster qsub’ becomes
‘cluster: qsub’ in the YAML file. Profiles can be obtained from https:
//github.com/snakemake-profiles. The profile can also be set via the
environment variable $SNAKEMAKE_PROFILE.

--cache Store output files of given rules in a central cache given by the environment vari-
able $SNAKEMAKE_OUTPUT_CACHE. Likewise, retrieve output files of the
given rules from this cache if they have been created before (by anybody writing
to the same cache), instead of actually executing the rules. Output files are identi-
fied by hashing all steps, parameters and software stack (conda envs or containers)
needed to create them.

--snakefile, -s The workflow definition in form of a snakefile.Usually, you should not need to
specify this. By default, Snakemake will search for ‘Snakefile’, ‘snakefile’, ‘work-
flow/Snakefile’, ‘workflow/snakefile’ beneath the current working directory, in
this order. Only if you definitely want a different layout, you need to use this
parameter.

--cores, -c Use at most N CPU cores/jobs in parallel. If N is omitted or ‘all’, the limit is
set to the number of available CPU cores. In case of cluster/cloud execution, this

5.2. Snakemake command-line interface 23

https://github.com/snakemake-profiles
https://github.com/snakemake-profiles

HippUnfold Documentation

argument sets the number of total cores used over all jobs (made available to rules
via workflow.cores).

--jobs, -j Use at most N CPU cluster/cloud jobs in parallel. For local execution this is an
alias for –cores.

--local-cores In cluster/cloud mode, use at most N cores of the host machine in parallel (default:
number of CPU cores of the host). The cores are used to execute local rules. This
option is ignored when not in cluster/cloud mode.

Default: 12

--resources, --res Define additional resources that shall constrain the scheduling analogously to
threads (see above). A resource is defined as a name and an integer value. E.g.
–resources mem_mb=1000. Rules can use resources by defining the resource key-
word, e.g. resources: mem_mb=600. If now two rules require 600 of the resource
‘mem_mb’ they won’t be run in parallel by the scheduler.

--set-threads Overwrite thread usage of rules. This allows to fine-tune workflow parallelization.
In particular, this is helpful to target certain cluster nodes by e.g. shifting a rule to
use more, or less threads than defined in the workflow. Thereby, THREADS has
to be a positive integer, and RULE has to be the name of the rule.

--max-threads Define a global maximum number of threads for any job. This can be helpful in a
cluster/cloud setting, when you want to restrict the maximum number of requested
threads without modifying the workflow definition or overwriting them invidiually
with –set-threads.

--set-resources Overwrite resource usage of rules. This allows to fine-tune workflow resources. In
particular, this is helpful to target certain cluster nodes by e.g. defining a certain
partition for a rule, or overriding a temporary directory. Thereby, VALUE has
to be a positive integer or a string, RULE has to be the name of the rule, and
RESOURCE has to be the name of the resource.

--set-scatter Overwrite number of scatter items of scattergather processes. This allows to fine-
tune workflow parallelization. Thereby, SCATTERITEMS has to be a positive
integer, and NAME has to be the name of the scattergather process defined via a
scattergather directive in the workflow.

--default-resources, --default-res Define default values of resources for rules that do not define their
own values. In addition to plain integers, python expressions over inputsize
are allowed (e.g. ‘2*input.size_mb’).When specifying this without any argu-
ments (–default-resources), it defines ‘mem_mb=max(2*input.size_mb, 1000)’
‘disk_mb=max(2*input.size_mb, 1000)’ i.e., default disk and mem usage is twice
the input file size but at least 1GB.In addition, the system temporary directory
(as given by $TMPDIR, $TEMP, or $TMP) is used for the tmpdir resource. The
tmpdir resource is automatically used by shell commands, scripts and wrappers to
store temporary data (as it is mirrored into $TMPDIR, $TEMP, and $TMP for the
executed subprocesses). If this argument is not specified at all, Snakemake just
uses the tmpdir resource as outlined above.

--preemption-default A preemptible instance can be requested when using the Google Life Sciences
API. If you set a –preemption-default,all rules will be subject to the default.
Specifically, this integer is the number of restart attempts that will be made given
that the instance is killed unexpectedly. Note that preemptible instances have a
maximum running time of 24 hours. If you want to set preemptible instances for
only a subset of rules, use –preemptible-rules instead.

--preemptible-rules A preemptible instance can be requested when using the Google Life Sciences

24 Chapter 5. Command-line interface

HippUnfold Documentation

API. If you want to use these instances for a subset of your rules, you can use
–preemptible-rules and then specify a list of rule and integer pairs, where each in-
teger indicates the number of restarts to use for the rule’s instance in the case
that the instance is terminated unexpectedly. –preemptible-rules can be used
in combination with –preemption-default, and will take priority. Note that pre-
emptible instances have a maximum running time of 24. If you want to apply a
consistent number of retries across all your rules, use –premption-default instead.
Example: snakemake –preemption-default 10 –preemptible-rules map_reads=3
call_variants=0

--config, -C Set or overwrite values in the workflow config object. The workflow config object
is accessible as variable config inside the workflow. Default values can be set by
providing a JSON file (see Documentation).

--configfile, --configfiles Specify or overwrite the config file of the workflow (see the docs). Values
specified in JSON or YAML format are available in the global config dictionary in-
side the workflow. Multiple files overwrite each other in the given order. Thereby
missing keys in previous config files are extended by following configfiles. Note
that this order also includes a config file defined in the workflow definition itself
(which will come first).

--envvars Environment variables to pass to cloud jobs.

--directory, -d Specify working directory (relative paths in the snakefile will use this as their
origin).

--touch, -t Touch output files (mark them up to date without really changing them) instead
of running their commands. This is used to pretend that the rules were executed,
in order to fool future invocations of snakemake. Fails if a file does not yet exist.
Note that this will only touch files that would otherwise be recreated by Snakemake
(e.g. because their input files are newer). For enforcing a touch, combine this
with –force, –forceall, or –forcerun. Note however that you loose the provenance
information when the files have been created in realitiy. Hence, this should be
used only as a last resort.

Default: False

--keep-going, -k Go on with independent jobs if a job fails.

Default: False

--rerun-triggers Possible choices: mtime, params, input, software-env, code

Define what triggers the rerunning of a job. By default, all triggers are used, which
guarantees that results are consistent with the workflow code and configuration.
If you rather prefer the traditional way of just considering file modification dates,
use ‘–rerun-trigger mtime’.

Default: [‘mtime’, ‘params’, ‘input’, ‘software-env’, ‘code’]

--force, -f Force the execution of the selected target or the first rule regardless of already
created output.

Default: False

--forceall, -F Force the execution of the selected (or the first) rule and all rules it is dependent
on regardless of already created output.

Default: False

--forcerun, -R Force the re-execution or creation of the given rules or files. Use this option if you
changed a rule and want to have all its output in your workflow updated.

5.2. Snakemake command-line interface 25

HippUnfold Documentation

--prioritize, -P Tell the scheduler to assign creation of given targets (and all their dependencies)
highest priority. (EXPERIMENTAL)

--batch Only create the given BATCH of the input files of the given RULE. This can be
used to iteratively run parts of very large workflows. Only the execution plan of
the relevant part of the workflow has to be calculated, thereby speeding up DAG
computation. It is recommended to provide the most suitable rule for batching
when documenting a workflow. It should be some aggregating rule that would be
executed only once, and has a large number of input files. For example, it can be
a rule that aggregates over samples.

--until, -U Runs the pipeline until it reaches the specified rules or files. Only runs jobs that
are dependencies of the specified rule or files, does not run sibling DAGs.

--omit-from, -O Prevent the execution or creation of the given rules or files as well as any rules
or files that are downstream of these targets in the DAG. Also runs jobs in sibling
DAGs that are independent of the rules or files specified here.

--rerun-incomplete, --ri Re-run all jobs the output of which is recognized as incomplete.

Default: False

--shadow-prefix Specify a directory in which the ‘shadow’ directory is created. If not supplied,
the value is set to the ‘.snakemake’ directory relative to the working directory.

--scheduler Possible choices: ilp, greedy

Specifies if jobs are selected by a greedy algorithm or by solving an ilp. The ilp
scheduler aims to reduce runtime and hdd usage by best possible use of resources.

Default: “greedy”

--wms-monitor IP and port of workflow management system to monitor the execution of snake-
make (e.g. http://127.0.0.1:5000) Note that if your service requires an authoriza-
tion token, you must export WMS_MONITOR_TOKEN in the environment.

--wms-monitor-arg If the workflow management service accepts extra arguments, provide. them in
key value pairs with –wms-monitor-arg. For example, to run an existing workflow
using a wms monitor, you can provide the pair id=12345 and the arguments will
be provided to the endpoint to first interact with the workflow

--scheduler-ilp-solver Possible choices: PULP_CBC_CMD

Specifies solver to be utilized when selecting ilp-scheduler.

Default: “COIN_CMD”

--scheduler-solver-path Set the PATH to search for scheduler solver binaries (internal use only).

--conda-base-path Path of conda base installation (home of conda, mamba, activate) (internal use
only).

--no-subworkflows, --nosw Do not evaluate or execute subworkflows.

Default: False

26 Chapter 5. Command-line interface

http://127.0.0.1:5000

HippUnfold Documentation

5.2.2 GROUPING

--groups Assign rules to groups (this overwrites any group definitions from the workflow).

--group-components Set the number of connected components a group is allowed to span. By default,
this is 1, but this flag allows to extend this. This can be used to run e.g. 3 jobs of
the same rule in the same group, although they are not connected. It can be helpful
for putting together many small jobs or benefitting of shared memory setups.

5.2.3 REPORTS

--report Create an HTML report with results and statistics. This can be either a .html file
or a .zip file. In the former case, all results are embedded into the .html (this
only works for small data). In the latter case, results are stored along with a file
report.html in the zip archive. If no filename is given, an embedded report.html
is the default.

--report-stylesheet Custom stylesheet to use for report. In particular, this can be used for branding
the report with e.g. a custom logo, see docs.

5.2.4 NOTEBOOKS

--draft-notebook Draft a skeleton notebook for the rule used to generate the given target file. This
notebook can then be opened in a jupyter server, exeucted and implemented until
ready. After saving, it will automatically be reused in non-interactive mode by
Snakemake for subsequent jobs.

--edit-notebook Interactively edit the notebook associated with the rule used to generate the given
target file. This will start a local jupyter notebook server. Any changes to the note-
book should be saved, and the server has to be stopped by closing the notebook
and hitting the ‘Quit’ button on the jupyter dashboard. Afterwards, the updated
notebook will be automatically stored in the path defined in the rule. If the note-
book is not yet present, this will create an empty draft.

--notebook-listen The IP address and PORT the notebook server used for editing the notebook
(–edit-notebook) will listen on.

Default: “localhost:8888”

5.2.5 UTILITIES

--lint Possible choices: text, json

Perform linting on the given workflow. This will print snakemake specific sug-
gestions to improve code quality (work in progress, more lints to be added in the
future). If no argument is provided, plain text output is used.

--generate-unit-tests Automatically generate unit tests for each workflow rule. This assumes that all
input files of each job are already present. Rules without a job with present input
files will be skipped (a warning will be issued). For each rule, one test case will
be created in the specified test folder (.tests/unit by default). After successfull
execution, tests can be run with ‘pytest TESTPATH’.

--containerize Print a Dockerfile that provides an execution environment for the workflow, in-
cluding all conda environments.

5.2. Snakemake command-line interface 27

HippUnfold Documentation

Default: False

--export-cwl Compile workflow to CWL and store it in given FILE.

--list, -l Show available rules in given Snakefile.

Default: False

--list-target-rules, --lt Show available target rules in given Snakefile.

Default: False

--dag Do not execute anything and print the directed acyclic graph of jobs in the dot lan-
guage. Recommended use on Unix systems: snakemake –dag | dot | displayNote
print statements in your Snakefile may interfere with visualization.

Default: False

--rulegraph Do not execute anything and print the dependency graph of rules in the dot lan-
guage. This will be less crowded than above DAG of jobs, but also show less
information. Note that each rule is displayed once, hence the displayed graph will
be cyclic if a rule appears in several steps of the workflow. Use this if above option
leads to a DAG that is too large. Recommended use on Unix systems: snakemake
–rulegraph | dot | displayNote print statements in your Snakefile may interfere with
visualization.

Default: False

--filegraph Do not execute anything and print the dependency graph of rules with their input
and output files in the dot language. This is an intermediate solution between
above DAG of jobs and the rule graph. Note that each rule is displayed once,
hence the displayed graph will be cyclic if a rule appears in several steps of the
workflow. Use this if above option leads to a DAG that is too large. Recommended
use on Unix systems: snakemake –filegraph | dot | displayNote print statements in
your Snakefile may interfere with visualization.

Default: False

--d3dag Print the DAG in D3.js compatible JSON format.

Default: False

--summary, -S Print a summary of all files created by the workflow. The has the following
columns: filename, modification time, rule version, status, plan. Thereby rule
version contains the versionthe file was created with (see the version keyword of
rules), and status denotes whether the file is missing, its input files are newer or
if version or implementation of the rule changed since file creation. Finally the
last column denotes whether the file will be updated or created during the next
workflow execution.

Default: False

--detailed-summary, -D Print a summary of all files created by the workflow. The has the following
columns: filename, modification time, rule version, input file(s), shell command,
status, plan. Thereby rule version contains the version the file was created with
(see the version keyword of rules), and status denotes whether the file is missing,
its input files are newer or if version or implementation of the rule changed since
file creation. The input file and shell command columns are self explanatory.
Finally the last column denotes whether the file will be updated or created during
the next workflow execution.

Default: False

28 Chapter 5. Command-line interface

HippUnfold Documentation

--archive Archive the workflow into the given tar archive FILE. The archive will be created
such that the workflow can be re-executed on a vanilla system. The function needs
conda and git to be installed. It will archive every file that is under git version
control. Note that it is best practice to have the Snakefile, config files, and scripts
under version control. Hence, they will be included in the archive. Further, it
will add input files that are not generated by by the workflow itself and conda
environments. Note that symlinks are dereferenced. Supported formats are .tar,
.tar.gz, .tar.bz2 and .tar.xz.

--cleanup-metadata, --cm Cleanup the metadata of given files. That means that snakemake removes
any tracked version info, and any marks that files are incomplete.

--cleanup-shadow Cleanup old shadow directories which have not been deleted due to failures or
power loss.

Default: False

--skip-script-cleanup Don’t delete wrapper scripts used for execution

Default: False

--unlock Remove a lock on the working directory.

Default: False

--list-version-changes, --lv List all output files that have been created with a different version (as de-
termined by the version keyword).

Default: False

--list-code-changes, --lc List all output files for which the rule body (run or shell) have changed in the
Snakefile.

Default: False

--list-input-changes, --li List all output files for which the defined input files have changed in the Snake-
file (e.g. new input files were added in the rule definition or files were renamed).
For listing input file modification in the filesystem, use –summary.

Default: False

--list-params-changes, --lp List all output files for which the defined params have changed in the
Snakefile.

Default: False

--list-untracked, --lu List all files in the working directory that are not used in the workflow. This can
be used e.g. for identifying leftover files. Hidden files and directories are ignored.

Default: False

--delete-all-output Remove all files generated by the workflow. Use together with –dry-run to list
files without actually deleting anything. Note that this will not recurse into sub-
workflows. Write-protected files are not removed. Nevertheless, use with care!

Default: False

--delete-temp-output Remove all temporary files generated by the workflow. Use together with –dry-
run to list files without actually deleting anything. Note that this will not recurse
into subworkflows.

Default: False

5.2. Snakemake command-line interface 29

HippUnfold Documentation

--bash-completion Output code to register bash completion for snakemake. Put the following in your
.bashrc (including the accents): snakemake –bash-completion or issue it in an
open terminal session.

Default: False

--keep-incomplete Do not remove incomplete output files by failed jobs.

Default: False

--drop-metadata Drop metadata file tracking information after job finishes. Provenance-
information based reports (e.g. –report and the –list_x_changes functions) will
be empty or incomplete.

Default: False

--version, -v show program’s version number and exit

5.2.6 OUTPUT

--reason, -r Print the reason for each executed rule (deprecated, always true now).

Default: False

--gui Serve an HTML based user interface to the given network and port e.g.
168.129.10.15:8000. By default Snakemake is only available in the local network
(default port: 8000). To make Snakemake listen to all ip addresses add the special
host address 0.0.0.0 to the url (0.0.0.0:8000). This is important if Snakemake is
used in a virtualised environment like Docker. If possible, a browser window is
opened.

--printshellcmds, -p Print out the shell commands that will be executed.

Default: False

--debug-dag Print candidate and selected jobs (including their wildcards) while inferring DAG.
This can help to debug unexpected DAG topology or errors.

Default: False

--stats Write stats about Snakefile execution in JSON format to the given file.

--nocolor Do not use a colored output.

Default: False

--quiet, -q Possible choices: progress, rules, all

Do not output certain information. If used without arguments, do not output any
progress or rule information. Defining ‘all’ results in no information being printed
at all.

--print-compilation Print the python representation of the workflow.

Default: False

--verbose Print debugging output.

Default: False

30 Chapter 5. Command-line interface

HippUnfold Documentation

5.2.7 BEHAVIOR

--force-use-threads Force threads rather than processes. Helpful if shared memory (/dev/shm) is full
or unavailable.

Default: False

--allow-ambiguity, -a Don’t check for ambiguous rules and simply use the first if several can produce
the same file. This allows the user to prioritize rules by their order in the snakefile.

Default: False

--nolock Do not lock the working directory

Default: False

--ignore-incomplete, --ii Do not check for incomplete output files.

Default: False

--max-inventory-time Spend at most SECONDS seconds to create a file inventory for the working
directory. The inventory vastly speeds up file modification and existence checks
when computing which jobs need to be executed. However, creating the inventory
itself can be slow, e.g. on network file systems. Hence, we do not spend more than
a given amount of time and fall back to individual checks for the rest.

Default: 20

--latency-wait, --output-wait, -w Wait given seconds if an output file of a job is not present after the
job finished. This helps if your filesystem suffers from latency (default 5).

Default: 5

--wait-for-files Wait –latency-wait seconds for these files to be present before executing the work-
flow. This option is used internally to handle filesystem latency in cluster envi-
ronments.

--wait-for-files-file Same behaviour as –wait-for-files, but file list is stored in file instead of being
passed on the commandline. This is useful when the list of files is too long to be
passed on the commandline.

--notemp, --nt Ignore temp() declarations. This is useful when running only a part of the work-
flow, since temp() would lead to deletion of probably needed files by other parts
of the workflow.

Default: False

--all-temp Mark all output files as temp files. This can be useful for CI testing, in order to
save space.

Default: False

--keep-remote Keep local copies of remote input files.

Default: False

--keep-target-files Do not adjust the paths of given target files relative to the working directory.

Default: False

--allowed-rules Only consider given rules. If omitted, all rules in Snakefile are used. Note that
this is intended primarily for internal use and may lead to unexpected results oth-
erwise.

5.2. Snakemake command-line interface 31

HippUnfold Documentation

--local-groupid Name for local groupid, meant for internal use only.

Default: “local”

--max-jobs-per-second Maximal number of cluster/drmaa jobs per second, default is 10, fractions al-
lowed.

Default: 10

--max-status-checks-per-second Maximal number of job status checks per second, default is 10, frac-
tions allowed.

Default: 10

-T, --retries, --restart-times Number of times to restart failing jobs (defaults to 0).

Default: 0

--attempt Internal use only: define the initial value of the attempt parameter (default: 1).

Default: 1

--wrapper-prefix Prefix for URL created from wrapper directive (default: https://github.com/
snakemake/snakemake-wrappers/raw/). Set this to a different URL to use
your fork or a local clone of the repository, e.g., use a git URL like
‘git+file://path/to/your/local/clone@’.

Default: “https://github.com/snakemake/snakemake-wrappers/raw/”

--default-remote-provider Possible choices: S3, GS, FTP, SFTP, S3Mocked, gfal, gridftp, iRODS,
AzBlob, XRootD

Specify default remote provider to be used for all input and output files that don’t
yet specify one.

--default-remote-prefix Specify prefix for default remote provider. E.g. a bucket name.

Default: “”

--no-shared-fs Do not assume that jobs share a common file system. When this flag is activated,
Snakemake will assume that the filesystem on a cluster node is not shared with
other nodes. For example, this will lead to downloading remote files on each clus-
ter node separately. Further, it won’t take special measures to deal with filesystem
latency issues. This option will in most cases only make sense in combination
with –default-remote-provider. Further, when using –cluster you will have to also
provide –cluster-status. Only activate this if you know what you are doing.

Default: False

--greediness Set the greediness of scheduling. This value between 0 and 1 determines how
careful jobs are selected for execution. The default value (1.0) provides the best
speed and still acceptable scheduling quality.

--no-hooks Do not invoke onstart, onsuccess or onerror hooks after execution.

Default: False

--overwrite-shellcmd Provide a shell command that shall be executed instead of those given in the
workflow. This is for debugging purposes only.

--debug Allow to debug rules with e.g. PDB. This flag allows to set breakpoints in run
blocks.

Default: False

32 Chapter 5. Command-line interface

https://github.com/snakemake/snakemake-wrappers/raw/
https://github.com/snakemake/snakemake-wrappers/raw/
https://github.com/snakemake/snakemake-wrappers/raw/

HippUnfold Documentation

--runtime-profile Profile Snakemake and write the output to FILE. This requires yappi to be in-
stalled.

--mode Possible choices: 0, 1, 2

Set execution mode of Snakemake (internal use only).

Default: 0

--show-failed-logs Automatically display logs of failed jobs.

Default: False

--log-handler-script Provide a custom script containing a function ‘def log_handler(msg):’. Snake-
make will call this function for every logging output (given as a dictionary
msg)allowing to e.g. send notifications in the form of e.g. slack messages or
emails.

--log-service Possible choices: none, slack, wms

Set a specific messaging service for logging output.Snakemake will notify the
service on errors and completed execution.Currently slack and workflow man-
agement system (wms) are supported.

5.2.8 CLUSTER

--cluster Execute snakemake rules with the given submit command, e.g. qsub. Snakemake
compiles jobs into scripts that are submitted to the cluster with the given com-
mand, once all input files for a particular job are present. The submit command
can be decorated to make it aware of certain job properties (name, rulename, in-
put, output, params, wildcards, log, threads and dependencies (see the argument
below)), e.g.: $ snakemake –cluster ‘qsub -pe threaded {threads}’.

--cluster-sync cluster submission command will block, returning the remote exitstatus upon re-
mote termination (for example, this should be usedif the cluster command is ‘qsub
-sync y’ (SGE)

--drmaa Execute snakemake on a cluster accessed via DRMAA, Snakemake compiles jobs
into scripts that are submitted to the cluster with the given command, once all
input files for a particular job are present. ARGS can be used to specify options of
the underlying cluster system, thereby using the job properties name, rulename,
input, output, params, wildcards, log, threads and dependencies, e.g.: –drmaa ‘
-pe threaded {threads}’. Note that ARGS must be given in quotes and with a
leading whitespace.

--cluster-config, -u A JSON or YAML file that defines the wildcards used in ‘cluster’for specific rules,
instead of having them specified in the Snakefile. For example, for rule ‘job’ you
may define: { ‘job’ : { ‘time’ : ‘24:00:00’ } } to specify the time for rule ‘job’.
You can specify more than one file. The configuration files are merged with later
values overriding earlier ones. This option is deprecated in favor of using –profile,
see docs.

Default: []

--immediate-submit, --is Immediately submit all jobs to the cluster instead of waiting for present input
files. This will fail, unless you make the cluster aware of job dependencies, e.g.
via: $ snakemake –cluster ‘sbatch –dependency {dependencies}. Assuming that
your submit script (here sbatch) outputs the generated job id to the first stdout
line, {dependencies} will be filled with space separated job ids this job depends
on. Does not work for workflows that contain checkpoint rules.

5.2. Snakemake command-line interface 33

HippUnfold Documentation

Default: False

--jobscript, --js Provide a custom job script for submission to the cluster. The default script resides
as ‘jobscript.sh’ in the installation directory.

--jobname, --jn Provide a custom name for the jobscript that is submitted to the cluster (see –clus-
ter). NAME is “snakejob.{name}.{jobid}.sh” per default. The wildcard {jobid}
has to be present in the name.

Default: “snakejob.{name}.{jobid}.sh”

--cluster-status Status command for cluster execution. This is only considered in combination
with the –cluster flag. If provided, Snakemake will use the status command to
determine if a job has finished successfully or failed. For this it is necessary that
the submit command provided to –cluster returns the cluster job id. Then, the
status command will be invoked with the job id. Snakemake expects it to return
‘success’ if the job was successfull, ‘failed’ if the job failed and ‘running’ if the
job still runs.

--cluster-cancel Specify a command that allows to stop currently running jobs. The command will
be passed a single argument, the job id.

--cluster-cancel-nargs Specify maximal number of job ids to pass to –cluster-cancel command, de-
faults to 1000.

Default: 1000

--cluster-sidecar Optional command to start a sidecar process during cluster execution. Only active
when –cluster is given as well.

--drmaa-log-dir Specify a directory in which stdout and stderr files of DRMAA jobs will be writ-
ten. The value may be given as a relative path, in which case Snakemake will use
the current invocation directory as the origin. If given, this will override any given
‘-o’ and/or ‘-e’ native specification. If not given, all DRMAA stdout and stderr
files are written to the current working directory.

5.2.9 KUBERNETES

--kubernetes Execute workflow in a kubernetes cluster (in the cloud). NAMESPACE is the
namespace you want to use for your job (if nothing specified: ‘default’). Usually,
this requires –default-remote-provider and –default-remote-prefix to be set to a S3
or GS bucket where your . data shall be stored. It is further advisable to activate
conda integration via –use-conda.

--container-image Docker image to use, e.g., when submitting jobs to kubernetes Defaults to ‘https:
//hub.docker.com/r/snakemake/snakemake’, tagged with the same version as the
currently running Snakemake instance. Note that overwriting this value is up to
your responsibility. Any used image has to contain a working snakemake installa-
tion that is compatible with (or ideally the same as) the currently running version.

34 Chapter 5. Command-line interface

https://hub.docker.com/r/snakemake/snakemake
https://hub.docker.com/r/snakemake/snakemake

HippUnfold Documentation

5.2.10 TIBANNA

--tibanna Execute workflow on AWS cloud using Tibanna. This requires –default-remote-
prefix to be set to S3 bucket name and prefix (e.g. ‘bucketname/subdirectory’)
where input is already stored and output will be sent to. Using –tibanna implies
–default-resources is set as default. Optionally, use –precommand to specify any
preparation command to run before snakemake command on the cloud (inside
snakemake container on Tibanna VM). Also, –use-conda, –use-singularity, –con-
fig, –configfile are supported and will be carried over.

Default: False

--tibanna-sfn Name of Tibanna Unicorn step function (e.g. tibanna_unicorn_monty).This works
as serverless scheduler/resource allocator and must be deployed first using tibanna
cli. (e.g. tibanna deploy_unicorn –usergroup=monty –buckets=bucketname)

--precommand Any command to execute before snakemake command on AWS cloud such as
wget, git clone, unzip, etc. This is used with –tibanna.Do not include input/output
download/upload commands - file transfer between S3 bucket and the run envi-
ronment (container) is automatically handled by Tibanna.

--tibanna-config Additional tibanna config e.g. –tibanna-config spot_instance=true sub-
net=<subnet_id> security group=<security_group_id>

5.2.11 GOOGLE_LIFE_SCIENCE

--google-lifesciences Execute workflow on Google Cloud cloud using the Google Life. Sci-
ence API. This requires default application credentials (json) to be cre-
ated and export to the environment to use Google Cloud Storage, Com-
pute Engine, and Life Sciences. The credential file should be exported as
GOOGLE_APPLICATION_CREDENTIALS for snakemake to discover. Also,
–use-conda, –use-singularity, –config, –configfile are supported and will be car-
ried over.

Default: False

--google-lifesciences-regions Specify one or more valid instance regions (defaults to US)

Default: [‘us-east1’, ‘us-west1’, ‘us-central1’]

--google-lifesciences-location The Life Sciences API service used to schedule the jobs. E.g., us-centra1
(Iowa) and europe-west2 (London) Watch the terminal output to see all options
found to be available. If not specified, defaults to the first found with a matching
prefix from regions specified with –google-lifesciences-regions.

--google-lifesciences-keep-cache Cache workflows in your Google Cloud Storage Bucket specified by
–default-remote-prefix/{source}/{cache}. Each workflow working directory is
compressed to a .tar.gz, named by the hash of the contents, and kept in Google
Cloud Storage. By default, the caches are deleted at the shutdown step of the
workflow.

Default: False

5.2. Snakemake command-line interface 35

HippUnfold Documentation

5.2.12 TES

--tes Send workflow tasks to GA4GH TES server specified by url.

5.2.13 CONDA

--use-conda If defined in the rule, run job in a conda environment. If this flag is not set, the
conda directive is ignored.

Default: False

--conda-not-block-search-path-envvars Do not block environment variables that modify the search
path (R_LIBS, PYTHONPATH, PERL5LIB, PERLLIB) when using conda envi-
ronments.

Default: False

--list-conda-envs List all conda environments and their location on disk.

Default: False

--conda-prefix Specify a directory in which the ‘conda’ and ‘conda-archive’ directories are cre-
ated. These are used to store conda environments and their archives, respectively.
If not supplied, the value is set to the ‘.snakemake’ directory relative to the invoca-
tion directory. If supplied, the –use-conda flag must also be set. The value may be
given as a relative path, which will be extrapolated to the invocation directory, or
as an absolute path. The value can also be provided via the environment variable
$SNAKEMAKE_CONDA_PREFIX.

--conda-cleanup-envs Cleanup unused conda environments.

Default: False

--conda-cleanup-pkgs Possible choices: tarballs, cache

Cleanup conda packages after creating environments. In case of ‘tarballs’ mode,
will clean up all downloaded package tarballs. In case of ‘cache’ mode, will addi-
tionally clean up unused package caches. If mode is omitted, will default to only
cleaning up the tarballs.

--conda-create-envs-only If specified, only creates the job-specific conda environments then exits. The
–use-conda flag must also be set.

Default: False

--conda-frontend Possible choices: conda, mamba

Choose the conda frontend for installing environments. Mamba is much faster
and highly recommended.

Default: “mamba”

36 Chapter 5. Command-line interface

HippUnfold Documentation

5.2.14 SINGULARITY

--use-singularity If defined in the rule, run job within a singularity container. If this flag is not set,
the singularity directive is ignored.

Default: False

--singularity-prefix Specify a directory in which singularity images will be stored.If not supplied, the
value is set to the ‘.snakemake’ directory relative to the invocation directory. If
supplied, the –use-singularity flag must also be set. The value may be given as
a relative path, which will be extrapolated to the invocation directory, or as an
absolute path.

--singularity-args Pass additional args to singularity.

Default: “”

5.2.15 ENVIRONMENT MODULES

--use-envmodules If defined in the rule, run job within the given environment modules, loaded in
the given order. This can be combined with –use-conda and –use-singularity,
which will then be only used as a fallback for rules which don’t define environment
modules.

Default: False

5.2. Snakemake command-line interface 37

HippUnfold Documentation

38 Chapter 5. Command-line interface

CHAPTER

SIX

RUNNING HIPPUNFOLD ON YOUR DATA

This section goes over the command-line options you will find most useful when running HippUnfold on your dataset,
along with describing some of the issues you might face.

Note: Please first refer to the simple example in the Installation section, which goes over running HippUnfold on a test
dataset, and the essential required options.

6.1 Selecting the modality to use

The --modality option must be chosen when running HippUnfold, and it affects what U-net model will be used, and
how the pre-processing will be performed on the images.

If you have sub-millimetric, isotropic, whole-brain T1w data, the --modality T1w option is recommended.

If you T2w data, you can use the --modality T2w option, however, you may need to also use the T1w data for
template registration (--t1-reg-template), especially if you have a limited FOV. This is typically most robust as
long as a full brain FOV T1w image is available. If this registration is still failing then it may be improved with the
--rigid-reg-template flag.

For protocols employing high-resolution, b-value 500, hippocampal diffusion-weighted imaging, the --modality
hippb500 option can be used, and does not require registration to a template (providing your acquisition is axial
and oblique to the hippocampus).

Specifying a manual segmentation (eg. --modality segT1w) expects to additionally find an input file with the suffix
_dseg which should contain labels following the protocol outlined here. More details are provided on using manual
segmentations on the following page.

6.2 Selecting and excluding subjects to process

By default, hippunfold will run on all the subjects in a dataset. If you want to run only on a subset of subjects, you can
use the --participant_label flag, e.g. adding:

--participant-label 001

would run only on sub-001. You can add additional subjects by listing additional arguments to this option, e.g.:

--participant-label 001 002

runs for sub-001 and sub-001.

Also, if you want to exclude a subject, you can use the --exclude-participant-label option.

39

https://ars.els-cdn.com/content/image/1-s2.0-S1053811917309977-mmc1.pdf

HippUnfold Documentation

6.3 Known limitations for BIDS parsing

HippUnfold uses snakebids, which makes use of pybids to parse a BIDS-compliant dataset. However, because of the
way Snakebids and Snakemake operate, one limitation is that the input files in your BIDS dataset need to be consistent in
terms of what optional BIDS entities exist in them. We can use the acquisition (acq) entity as an example. HippUnfold
should have no problem parsing the following dataset:

PATH_TO_BIDS_DIR/
dataset_description.json
sub-001/

anat/
sub-001_acq-mprage_T1w.nii.gz

sub-002/
anat/

sub-002_acq-spgr_T1w.nii.gz
...

as the path (with wildcards) will be interpreted as sub-{subject}_acq-{acq}_T1w.nii.gz.

However, the following dataset will raise an error:

PATH_TO_BIDS_DIR/
dataset_description.json
sub-001/

anat/
sub-001_acq-mprage_T1w.nii.gz

sub-002/
anat/

sub-002_T1w.nii.gz
...

because two distinct paths (with wildcards) would be found for T1w images:

sub-{subject}_acq-{acq}_T1w.nii.gz

and

sub-{subject}_T1w.nii.gz

Similarly, you could not have some subjects with the ses identifier, and some subjects without it.

There will soon be added functionality in snakebids to filter out extra files, but for now, if your dataset has these issues
you will need to rename or remove extraneous files.

More examples of possible BIDS-compliant datasets can be found in hippunfold/test_data/.

40 Chapter 6. Running HippUnfold on your data

https://bids.neuroimaging.io/
https://github.com/khanlab/hippunfold/tree/master/test_data

HippUnfold Documentation

6.4 Parsing Non-BIDS datasets with custom paths

Custom paths can be used to parse input datasets if the data are not in BIDS format, but still are uniquely identified by
subject (or subject+session) identifiers. For example:

PATH_TO_nonBIDS_DIR/
s_001_T1w.nii.gz
s_001_T2SPACE.nii.gz
s_001_TSE.nii.gz
s_002_T1w.nii.gz
s_002_T2SPACE.nii.gz
s_002_TSE.nii.gz

...

This directory doesn’t separate subjects into different folders or contain an anat/ folder for structural images. How-
ever, we can still specify what subjects and images to use with subject wildcards. This is done by using the
--path-{modality} options to specify the absolute location of the nii.gz files. Note that here, T2SPACE and
TSE are both T2-weighted acquisitions, and can be captured by using the --path-T2w flag to specify exactly which
of these file(s) to use as inputs. For example, the following command:

hippunfold - PATH_TO_OUTPUT_DIR participant \
--modality T2w \
--t1-reg-template \
--path_T1w PATH_TO_nonBIDS_DIR/s_{subject}_T1w.nii.gz \
--path_T2w PATH_TO_nonBIDS_DIR/s_{subject}_T2SPACE.nii.gz

will search for any files following the naming scheme and fill in {subject} IDs for any files it finds, using the T1w
and T2SPACE images for T1w and T2w inputs

6.4.1 Prerequisities for using custom path parsing:

Not all non-BIDS datasets can be parsed, and may still need some reformatting or renaming.

Specifically:

• The subject (or subject/session) wildcard(s) can only contain letters or numbers, e.g. they cannot include under-
scores, hyphens, or spaces.

• The subject (or subject/session) wildcard(s) must be the only unique identifiers in the filenames.

For example, this datasets would be ineligible:

PATH_TO_nonBIDS_DIR/
s_2019-05-29_001_T1w.nii.gz
s_2019-05-29_001_T2SPACE.nii.gz
s_2019-05-29_001_TSE.nii.gz
s_2018-02-24_002_T1w.nii.gz
s_2018-02-24_002_T2SPACE.nii.gz
s_2018-02-24_002_TSE.nii.gz

...

You would need to rename/symlink your images to remove the additional unique date identifiers, or integrate it into
thes subject wildcard, ensuring only letters and numbers appear in the wildcard, e.g.:

6.4. Parsing Non-BIDS datasets with custom paths 41

HippUnfold Documentation

PATH_TO_nonBIDS_DIR/
s_20190529s001_T1w.nii.gz
s_20190529s001_T2SPACE.nii.gz
s_20190529s001_TSE.nii.gz
s_20180224s002_T1w.nii.gz
s_20180224s002_T2SPACE.nii.gz
s_20180224s002_TSE.nii.gz

...

42 Chapter 6. Running HippUnfold on your data

CHAPTER

SEVEN

SPECIALIZED SCANS

This tutorial will cover how HippUnfold can be applied to non-standard data including ex-vivo scans, super-high res-
olution data (eg. <0.3mm isotropic), non-MRI 3D imaging data, or scans where a corresponding whole-brain T1w
image is not available.

We will show how the available flags can be adapted for these use-cases with several worked examples.

7.1 Case 1: super high resolution

In this example, we have only a limited field of view covering the hippocampus, and the resolution and contrast do not
closely match the training data of HippUnfold (0.3-1.0mm isotropic T1w, T2w, or DWI data). This could be ex-vivo
MRI data, or it could even be 3D microscopy data as in our recent 3D BigBrain publication. Thus we don’t expect
HippUnfold’s inbuilt UNet to be successful in segmenting hippocampal tissue before unfolding, and we do not want
to downsample our data to accommodate HippUnfold’s usual UNet and unfolding workflow in space-corobl (which
consists of 0.3mm isotropic resampling cropped coronally-oblique to the hippocampus).

This will require manual segmentation of hippocampal grey matter, SRLM, and neighbouring structures, though in the
future we hope to include models trained with higher resolution data (and contrasts more common in ex-vivo scanning).
This should be done according to the protocol outlined here or, more recently, the video example here. This manual
segmentation file should have the _dseg suffix.

Here is an example of what the input directory might look like:

exvivo/
sub-001/

sub-001_hemi-R_desc-hippo_T2w.nii.gz
sub-001_hemi-R_desc-hippo_dseg.nii.gz

This can be unfolded with the command:

hippunfold . PATH_TO_OUTPUT_DIR participant --modality cropseg \
--path_cropseg exvivo/sub-{subject}/sub-{subject}_hemi-{hemi}_desc-hippo_dseg.nii.gz \
--hemi R --skip_inject_template_labels

Explanation: --modality cropseg informs HippUnfold that the input manual segmentation should not be resampled
and UNet does not need to be run. Because of a limitation in bids parsing for the hemi entity, we need to use the
generic path input, --path_cropseg in this case, making sure we use the {subject} and {hemi} wildcards in the
filename. Output files will be named with space-corobl because HippUnfold is coded to effectively treat all files
as already being in this space. We need the --hemi R to prevent HippUnfold looking for both hemispheres. Finally,
because this segmentation was performed manually on very high resolution data, we can optionally consider skipping
the template shape injection step with --skip_inject_template_labels. Template shape injection can fix minor

43

https://www.sciencedirect.com/science/article/pii/S105381191930919X
https://ars.els-cdn.com/content/image/1-s2.0-S1053811917309977-mmc1.pdf
https://www.youtube.com/watch?v=mUQJ2GUcnLU&t=1s

HippUnfold Documentation

errors in segmentation from UNet or from an imperfect manual rater, at the cost of smoothing out some details of the
hippocampus due to the fact that it uses deformable registration with inherent smoothness contraints.

Note that because we are not resampling to the CITI168 template or using UNet, the T2w image in this example is
effectively not being used at all. Instead, the provided manual segmentation makes up the basis for unfolding.

7.2 Case 2: one ex-vivo hemisphere

In this example, we have a single hemisphere that was scanned ex-vivo at a nearly standard resolution and T2w contrast.
Because the resolution and contrast are similar to the HippUnfold training data, we expect UNet will work and so we
don’t need to perform manual segemntation. However, due to gross deformations and the missing hemisphere, we
don’t expect this sample to register well to the standard CITI168 template. Thus, we will need to manually resample
the image to the CITI168 template prior to running HippUnfold, focusing in particular on aligning the hippocampus.
Once done, we may have a directory like this:

PATH_TO_EXVIVO_DIR/
sub-001/

sub-001_hemi-R_desc-exvivo_T2w.nii.gz
sub-001_hemi-R_affine-exvivo-to-CITI168_xfm.txt
sub-001_hemi-R_desc-exvivo_space-CITI168_T2w.nii.gz

Note that only the last file is needed for unfolding:

hippunfold . PATH_TO_OUTPUT_DIR participant --output_spaces corobl --hemi R --no_reg_
→˓template \
--path_T2w PATH_TO_EXVIVO_DIR/sub-001/sub-001_hemi-R_desc-exvivo_space-CITI168_T2w.nii.
→˓gz \
--output_spaces corobl

Here we need to use --path_T2w to specify which input should be used, and --no_reg_template to specify
that it is already in space-CITI168. In this case, we also specified --output_spaces corobl. This is not
needed, but is useful when we are interested in only the hippocampus as space-corobl is higher resolution and
cropped more nicely around the hippocampus then the original scan, making it a good space to perform subse-
quent analyses. Alternatively, outputs can be transformed back to the original space using the inverted transform
sub-001_hemi-R_affine-exvivo-to-CITI168_xfm.txt.

This same usage could also be applied in a standard MRI case where no T1w image is available.

44 Chapter 7. Specialized scans

CHAPTER

EIGHT

FREQUENTLY ASKED QUESTIONS

1. Why is the workflow stopping at the run_inference step?

2. Why do I get the error, No input images found for T1w, or No input images found for T2w

8.1 Why is the workflow stopping at the run_inference step?

If you are getting an error in the run_inference step, e.g. as follows:

[Thu Nov 10 02:11:20 2022]
Finished job 65.
18 of 193 steps (9%) done
Select jobs to execute...

[Thu Nov 10 02:11:20 2022]
rule run_inference:

input: work/sub-1425/anat/sub-1425_hemi-R_space-corobl_desc-preproc_T1w.nii.gz, /opt/
→˓hippunfold_cache/trained_model.3d_fullres.Task101_hcp1200_T1w.nnUNetTrainerV2.model_
→˓best.tar

output: work/sub-1425/anat/sub-1425_hemi-R_space-corobl_desc-nnunet_dseg.nii.gz
log: logs/sub-1425/sub-1425_hemi-R_space-corobl_nnunet.txt
jobid: 64
reason: Missing output files: work/sub-1425/anat/sub-1425_hemi-R_space-corobl_desc-

→˓nnunet_dseg.nii.gz; Input files updated by another job: work/sub-1425/anat/sub-1425_
→˓hemi-R_space-corobl_desc-preproc_T1w.nii.gz

wildcards: subject=1425, hemi=R
resources: tmpdir=/tmp, gpus=0, mem_mb=16000, time=60

mkdir -p tempmodel tempimg templbl && cp work/sub-1425/anat/sub-1425_hemi-R_space-corobl_
→˓desc-preproc_T1w.nii.gz tempimg/temp_0000.nii.gz && tar -xf /opt/hippunfold_cache/
→˓trained_model.3d_fullres.Task101_hcp1200_T1w.nnUNetTrainerV2.model_best.tar -C␣
→˓tempmodel && export RESULTS_FOLDER=tempmodel && export nnUNet_n_proc_DA=1 && nnUNet_
→˓predict -i tempimg -o templbl -t Task101_hcp1200_T1w -chk model_best --disable_tta &>␣
→˓logs/sub-1425/sub-1425_hemi-R_space-corobl_nnunet.txt && cp templbl/temp.nii.gz work/
→˓sub-1425/anat/sub-1425_hemi-R_space-corobl_desc-nnunet_dseg.nii.gz
Shutting down, this might take some time.
Exiting because a job execution failed. Look above for error message
Complete log: .snakemake/log/2022-11-10T020645.651622.snakemake.log

it is likely that you do not have enough memory available on your system. You need to have at least 8GB of memory on
your system. If you are running Docker on Windows/Mac or another virtual machine (e.g. VirtualBox) you will need

45

HippUnfold Documentation

to increase the amount of memory dedicated to the virtual machine.

8.2 Why do I get the error, No input images found for T1w, or No
input images found for T2w

The workflow is unable to find any input files to run HippUnfold.

This can happen if:

• Singularity or docker cannot access your input directory. For Singularity, ensure your Singularity options are
appropriate, in particular SINGULARITY_BINDPATH. For docker, ensure you are mounting the correct directory
with the -v flag described in the Getting started section.

• HippUnfold does not recognize your BIDS-formatted input images. This can occur if, for example, T1w images
are labelled with the suffix _t1w.nii.gz instead of _T1w.nii.gz as per BIDS specifications. HippUnfold
makes use of PyBIDS to parse the dataset, so we suggest you use the BIDS Validator to ensure your dataset
has no errors. Note: You can override BIDS parsing and use custom filenames with the --path-* option as
described in the Parsing Non-BIDS datasets with custom paths section.

46 Chapter 8. Frequently asked questions

https://docs.sylabs.io/guides/3.1/user-guide/cli/singularity_run.html
https://hippunfold.readthedocs.io/en/latest/getting_started/docker.html
https://bids.neuroimaging.io/specification.html
https://github.com/bids-standard/pybids
https://bids-standard.github.io/bids-validator/

CHAPTER

NINE

PIPELINE DETAILS

This section describes the HippUnfold workflow, that is, the steps taken to produce the intermediate and final files.
HippUnfold is a Snakemake workflow, and thus the workflow is a directed acyclic graph (DAG) that is automatically
configured based on a set of rules.

9.1 Overall workflow

Below is a example simplified visualization of the workflow DAG for the --modality T1w workflow. Each rounded
rectangle in the DAG represents a rule, that is, some code or script that produces output file(s), and the arrows represent
file inputs and outputs to these rules. It is simplified in that multiple instances of each rule are not shown, e.g. the
run_inference rule runs on both left and right hemispheres (hemi=L, hemi=R), but only one run_inference box
is shown here.

Although it may still look very complex (click on the image to enlarge), it is also organized into groups of rules, each
representing the main phases of the workflow. Each grouped set of rules also exist in separate rule files, which can be
found in the rules sub-folder
in the workflow source. For example, the preproc_t1 file contains the rules related to pre-processing the T1w images,
and these are grouped together in the above diagram by a blue rectangle labelled preproc_t1.

47

http://github.com/khanlab/hippunfold/tree/master/hippunfold/workflow/rules
http://github.com/khanlab/hippunfold/tree/master/hippunfold/workflow/rules/preproc_t1.smk

HippUnfold Documentation

The main phases of the workflow are described in the sections below, zooming in on the rules used in each blue
rectangle, one at a time.

9.2 Pre-processing

The pre-processing workflow for HippUnfold is generated based on the input data (e.g. whether there are multiple
T2w images or a single T2w image), what modality is used (e.g. --modality T1w or --modality T2w), and what
optional arguments are specified (e.g. --t1-reg-template).

9.2.1 T1w pre-processing

T1w images are imported, intensity-corrected using N4, and linearly registered to the template image (default: CITI168
- an HCP T1w template). An existing transformation to align the images in a coronal oblique (space-corobl) orienta-
tion is concatenated, and this space is used to define the left and right hippocampus bounding boxes in 0.3mm isotropic
space. The left hippocampus subvolume is left-right flipped at this stage too (subsequent steps in the corobl space
operate on both the hemi-R and hemi-Lflip images).

48 Chapter 9. Pipeline Details

HippUnfold Documentation

9.2. Pre-processing 49

HippUnfold Documentation

9.2.2 T2w pre-processing

T2w images are processed similarly, except the T2w version of the template is used. If multiple T2w images exist,
these are motion-corrected and averaged prior to N4 correction. The diagram below shows the T2w pre- processing
workflow for a dataset with three T2w runs.

9.2.3 T2w with T1w template registration

For T2w images where template registration is failing (e.g. because the T2w images have a limited FOV), the
--t1-reg-template option can be used, and will perform template registration with the T1w images, along with
a within-subject registration of the T2w to the T1w, concatenating all the transforms. This is shown in the diagrams
below (with a single T2w image in this case):

50 Chapter 9. Pipeline Details

HippUnfold Documentation

9.2. Pre-processing 51

HippUnfold Documentation

Note that these are not the only workflow configurations possible, several other variants exist by using the command-
line flags. For example, if you have T1w and T2w images that are already pre-processed and co-registered (e.g. HCP
processed data), then you should use the --skip-preproc and --skip-coreg options to skip N4 and T1w/T2w
co-registration.

52 Chapter 9. Pipeline Details

HippUnfold Documentation

9.3 U-net segmentation

The U-net segmentation is performed on the cropped, space-corobl images, producing tissue segmentations (gray
matter, SRLM, and anatomical landmarks for unfolding). This step is done in a single rule, which runs inference on
the image using the corresponding nnU-net model based on the modality chosen. This is done on the R and Lflip
hippocampus images, and the Lflip is subsequently unflipped.

9.4 Template-based shape injection

Since the nnU-net segmentation may possibly contain topological errors that can cause issues when the Laplace-based
coordinates, we perform an additional registration-based correction step, a shape injection, where we perform non-
linear registration of a template hippocampus segmentation and the U-net segmentation, to warp the template shape.
Regularization from the registration ensures topology from the template is preserved while it is warped to match the
subject hippocampus. In addition to the segmentation, we also propagate Laplace coordinates to serve as an initializa-
tion to the next step.

The following diagram shows the workflow, but simplified to contain one hemisphere (--hemi R), and excluding the

9.3. U-net segmentation 53

HippUnfold Documentation

dentate gyrus.

9.5 Laplace & equivolume coordinates

The basis of the hippocampal unfolding is the definition of the Laplace coordinates. Here, Laplace’s equation is solved
on the domain of the gray matter, using the anatomical landmarks to define boundary conditions. This provides the
intrinsic set of anatomical coordinates (AP, PD, IO) for unfolding the hippocampus. For the IO (laminar) coordinates
we make use of the equivolume solution instead of Laplace.

The following diagram shows the workflow, but simplified to contain one hemisphere (--hemi R), and excluding the
dentate gyrus.

54 Chapter 9. Pipeline Details

HippUnfold Documentation

9.6 Subfields processing

The volumetric subfield segmentation is derived from the coord images from the last step, along with the atlas that
defines how the coordinates map to subfields.

The following diagram shows the workflow, but simplified to contain one hemisphere (--hemi R), and excluding the
dentate gyrus.

9.7 Generating warp files

To allow users to transform data between the different spaces, we generate warp files that can be applied to transform
volumes of surfaces to and from the native and unfolded spaces.

The following diagram shows the workflow, but simplified to contain one hemisphere (--hemi R), and excluding the
dentate gyrus.

9.6. Subfields processing 55

HippUnfold Documentation

9.8 Surface processing

Using the warps, we transform standard template unfolded meshes to each subject hippocampus, in order to obtain
surface meshes in the native space. These are stored in GIFTI format, and we also produce metric files to quantify
surface morphometry (thickness, gyrification, curvature).

The following diagram shows the workflow, but simplified to contain one hemisphere (--hemi R), and excluding the
dentate gyrus.

9.9 Additional steps

Resampling to output resolution, quality control snapshot generation, and archiving the work folder are steps that are
also carried out by the workflow, but the DAGs are now shown here because of the many inputs/outputs, and generally
have straightforward workflow structures.

56 Chapter 9. Pipeline Details

CHAPTER

TEN

ALGORITHMIC DETAILS

10.1 Hippocampal unfolding

Our approach to unfolding the hippocampus involves constructing a coordinate system, defined using the solutions to
partial differential equations to enforce smoothness, and to employ anatomically-derived boundary conditions. Each
of the three coordinates (AP, PD, IO) are solved independently of each other, each using distinct boundary conditions
defined by the hippocampus tissue segmentation. With the notation 𝐿𝑅𝑂𝐼 to represent the labelled set of voxels in the
hippocampus of a specific ROI, the domain of the solution, along with boundary conditions as source and sink, are
defined as follows:

𝐿𝑑𝑜𝑚𝑎𝑖𝑛 =
{︁
𝐿𝐺𝑀 ∪ 𝐿𝐷𝐺, if coords = 𝐴𝑃 ∨ 𝑃𝐷 ∨ 𝐼𝑂

𝐿𝑠𝑜𝑢𝑟𝑐𝑒 =

⎧⎪⎨⎪⎩
𝐿𝐻𝐴𝑇𝐴, if coords = 𝐴𝑃

𝐿𝑀𝑇𝐿𝐶 , if coords = 𝑃𝐷

𝐿𝑆𝑅𝐿𝑀 ∪ 𝐿𝑃𝑖𝑎𝑙 ∪ 𝐿𝐶𝑦𝑠𝑡, if coords = 𝐼𝑂

𝐿𝑠𝑖𝑛𝑘 =

⎧⎪⎨⎪⎩
𝐿𝐼𝑛𝑑𝐺𝑟𝑖𝑠, if coords = 𝐴𝑃

𝐿𝐷𝐺, if coords = 𝑃𝐷

𝐿𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, if coords = 𝐼𝑂

10.1.1 Template-based shape injection

We make use of a fluid diffeomorphic image registration, between a template hippocampus tissue segmentation, and
the U-net tissue segmentation, in order to 1) help enforce the template topology, and 2) provide an initialization to the
Laplace solution. By performing a fluid registration, driven by the segmentations instead of the MRI images, the warp
is able to bring the template shape into close correspondence with the subject, but the regularization helps ensure that
the topology present in the template is not broken. The template we use was built from 22 ex vivo images from the
Penn Hippocampus Atlas.

The registration is performed using greedy, initialized using moment tensor matching (without reflections) to obtain
an affine transformation, and a multi-channel sum of squared differences cost function for the fluid registration. The
channels are made up of binary images, split from the multi-label tissue segmentations, which are then smoothed with
a Gaussian kernel with standard deviation of 0.5mm. The Cyst label is replaced by the SRLM prior to this, since the
locations of cysts are not readily mapped using a template shape. After warping the discrete template tissue labels to
the subject, the subject’s Cyst label is then re-combined with the transformed template labels.

The pre-computed Laplace solutions on the template image (analogous to method described below), 𝜓𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒
𝐴→𝑃 ,

𝜓𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒
𝑃→𝐷 , 𝜓𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒

𝐼→𝑂 , are then warped to the subject using the diffeomorphic registration to provide an initialization
for the subject.

57

https://www.nitrc.org/projects/pennhippoatlas/
https://sites.google.com/view/greedyreg/about

HippUnfold Documentation

10.1.2 Fast marching initialization

As an alternative if template-based shape injection is not used, we employ a fast marching method to provide an ini-
tialization to the Laplace solution, to speed up convergence. We make use of the scikit-fmm Python package, that finds
approximate solutions to the boundary value problems of the Eikonal equation,

𝐹 (x) |∇𝜑(x)| = 1,

which describes the evolution of a closed curve as a function of time, 𝜑, with speed 𝐹 (x) > 0 in the normal direction
at a point x on the curve. The fast marching implementation provides a function (image) representing travel time to the
zero contour of an input, 𝜑.

We first perform fast marching from the source (forward direction), by initializing the zero contour with:

𝜑0(x) =

{︃
0, x ∈ 𝐿𝑠𝑜𝑢𝑟𝑐𝑒

1, x /∈ 𝐿𝑠𝑜𝑢𝑟𝑐𝑒

and we make use of the NumPy masked arrays to avoid computations in voxels outside of 𝐿𝑑𝑜𝑚𝑎𝑖𝑛. We use a constant
speed function of 1, and perform fast marching to produce a travel-time image, 𝑇𝑓𝑜𝑟𝑤𝑎𝑟𝑑(x), that is normalized by
max(𝑇𝑓𝑜𝑟𝑤𝑎𝑟𝑑(x)) to obtain an image from 0 to 1 (0 at the source). We perform the same process for the sink region,
by setting 𝜑 based on 𝐿𝑠𝑖𝑛𝑘, which produces a normalized 𝑇𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(x) image. We combine forward and backward
images by averaging 𝑇𝑓𝑜𝑟𝑤𝑎𝑟𝑑 and 1 − 𝑇𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 to produce the combined fast marching image, 𝑇𝑓𝑎𝑠𝑡𝑚𝑎𝑟𝑐ℎ.

10.1.3 Solving Laplace’s equation

Laplace’s equation is a second-order partial differential equation,

∇2𝜓(x) = 0,

where 𝜓 is a scalar field enclosed between the source and sink boundaries. A simple approach to solve Laplace’s
equation is with an iterative finite-differences approach (Jacobian method), where each voxel in the field is updated at
each iteration as the average of the neighbouring grid points, e.g. for a 2-D field,

𝜓𝑖+1(𝑥, 𝑦) =
1

4
[𝜓𝑖(𝑥+ ∆𝑥, 𝑦) + 𝜓𝑖(𝑥− ∆𝑥, 𝑦) + 𝜓𝑖(𝑥, 𝑦 + ∆𝑦) + 𝜓𝑖(𝑥, 𝑦 − ∆𝑦)] .

For our 3-D implementation, we use the nearest 18 neighbours, and perform the operation using convolution with a
kernel size of 3 × 3 × 3, or 27 voxels. We initialize the 𝜓 field as follows:

𝜓𝑖=0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ∈ 𝐿𝑠𝑜𝑢𝑟𝑐𝑒

1, x ∈ 𝐿𝑠𝑖𝑛𝑘

𝑇𝑓𝑎𝑠𝑡𝑚𝑎𝑟𝑐ℎ(x), x ∈ 𝐿𝑑𝑜𝑚𝑎𝑖𝑛

𝑁𝑎𝑁, otherwise.

We used the convolve method from the AstroPy Python package instead of NumPy’s convolve, because it avoids using
NaN values (i.e. voxels outside the gray matter) in the convolution, replacing them with interpolated values using the
convolution kernel. We iteratively update 𝜓 until either the sum-of-squared-differences,

∑︀
[𝜓𝑖(x) − 𝜓𝑖−1(x)]

2, is less
than 1×10−5, or a maximum iterations of 10,000 are reached. Note that more efficient approaches to solving Laplace’s
equation are possible (such as successive over-relaxation), however, we used this more conservative approach to avoid
stability and convergence issues.

We use this approach to independently produce 𝜓𝐴→𝑃 and 𝜓𝑃→𝐷. Note that because we are solving these fields
independent of one another, their gradient fields are not guaranteed to be perpendicular, however, we have not observed
large deviations in practice. A solution for jointly solving 𝜓𝐴→𝑃 and 𝜓𝑃→𝐷 is left for future work.

58 Chapter 10. Algorithmic details

https://github.com/scikit-fmm/scikit-fmm
https://docs.astropy.org/en/stable/api/astropy.convolution.convolve.html

HippUnfold Documentation

10.1.4 Equivolumetric laminar coordinates

For the laminar, or inner-outer coordinates, , 𝜓𝐼→𝑂, it has been shown that an equivolumetric approach, that preserves
the volume of cortical segments by altering laminar thickness based on the curvature, is more anatomically-realistic for
the cerebral cortex. We implement this approach as the default for the IO coordinates, making use of the implementation
in NighRes. Here, we set the inner level-set to be 𝐿𝑠𝑜𝑢𝑟𝑐𝑒, effectively the SRLM, and the outer level-set as the entire
hippocampus. The continuous depth image returned by the volumetric layering function is then used directly as 𝜓𝐼→𝑂.

10.1.5 Warps for unfolding

We make use of the three coordinates, 𝜓𝐴→𝑃 , 𝜓𝑃→𝐷, and 𝜓𝐼→𝑂, to create 3D warp fields that transform images and
surfaces between the native domain 𝐷𝑛𝑎𝑡𝑖𝑣𝑒 ⊂ R3, and the unfolded domain 𝐷𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑 ⊂ R3.

Because solve Laplace’s equation in voxels restricted to the gray matter, the native domain, 𝐷𝑛𝑎𝑡𝑖𝑣𝑒 is made up of
x = (𝑥, 𝑦, 𝑧), where x ∈ 𝐿𝐺𝑀 .

The unfolded domain, 𝐷𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑, is a distinct 3D space, indexed by u = (𝑢, 𝑣, 𝑤), where 𝑢 = 𝜓𝐴→𝑃 (𝑥, 𝑦, 𝑧),
𝑣 = 𝜓𝑃→𝐷(𝑥, 𝑦, 𝑧), and 𝑤 = 𝜓𝐼→𝑂(𝑥, 𝑦, 𝑧). The 𝜓 fields are initially normalized to 0 → 1, which would produce
a rectangular prism between (0, 0, 0) and (1, 1, 1). However, we have re-scaled the aspect ratio and discretization to
better approximate the true size of the hippocampus along each dimension, producing a volume of size 256𝑥128𝑥16.
To facilitate visualization, we set the origin to (0, 200, 0) (in mm) so as not to overlap with our native space) and set a
physical voxel spacing of 0.15625mm in each direction.

Forward warps

The transformation, or displacement warp field, that takes points, x ∈ R3, (or surfaces) from native to unfolded space,
is denoted as 𝑇 𝑠𝑢𝑟𝑓

x→u : (𝑥, 𝑦, 𝑧) → (𝑢, 𝑣, 𝑤), and is simply defined as:

𝑇 𝑠𝑢𝑟𝑓
x→u (𝑥, 𝑦, 𝑧) = (𝜓𝐴→𝑃 (𝑥, 𝑦, 𝑧) − 𝑥, 𝜓𝑃→𝐷(𝑥, 𝑦, 𝑧) − 𝑦, 𝜓𝐼→𝑂(𝑥, 𝑦, 𝑧) − 𝑧) ,

and is valid for any point, or surface vertex, within the native domain, 𝐷𝑛𝑎𝑡𝑖𝑣𝑒. Note that construction of this displace-
ment field also involves rescaling for the physical voxel dimensions of the unfolded domain as described above, which
is left out of the above equations.

Warps for surfaces and images

The warp field that transforms points/surfaces from native to unfolded also transforms images from the unfolded to the
native domain,

𝑇 𝑠𝑢𝑟𝑓
x→u = 𝑇 𝑖𝑚𝑔

u→x,

since images on a rectilinear grid must be warped with the inverse of the transformation that is required for points
or surfaces. This is not particular to HippUnfold, and is true for any transformations. This is because instead of
pushing forward from the moving image grid (which leads to off-grid locations), we start at the fixed grid-point (e.g.
in native space), and pull-back with the inverse transformation to determine an (off-grid location) in unfolded space, to
interpolate image intensities from neighbouring grid locations (e.g. in the unfolded space).

10.1. Hippocampal unfolding 59

https://nighres.readthedocs.io/en/latest/laminar/volumetric_layering.html

HippUnfold Documentation

10.1.6 Inverse warps

To obtain, 𝑇 𝑠𝑢𝑟𝑓
u→x : (𝑢, 𝑣, 𝑤) → (𝑥, 𝑦, 𝑧), or equivalently, 𝑇 𝑖𝑚𝑔

u→x : 𝐷𝑛𝑎𝑡𝑖𝑣𝑒 → 𝐷𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑, requires determining the in-
verse of the transformation that is provided by the 𝜓 fields. We achieve this by first applying the forward transformation
on all grid locations in the native domain, obtaining

𝑇 𝑠𝑢𝑟𝑓
x→u (𝑥, 𝑦, 𝑧) = (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) , ∀(𝑥, 𝑦, 𝑧) ∈ 𝐷𝑛𝑎𝑡𝑖𝑣𝑒.

The source native grid location, (𝑥, 𝑦, 𝑧) for each the transformed points (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) is used to define the inverse
transformation:

𝑇 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑
u→x (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) = (𝑥− 𝑇𝑥, 𝑦 − 𝑇𝑦, 𝑧 − 𝑇𝑧)

However, these points are only defined at scattered locations in the unfolded space, thus we need to use interpolation
between these points to obtain 𝑇 𝑠𝑢𝑟𝑓

u→x defined at all grid locations in 𝐷𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑. We perform this operation using the
griddata function from SciPy, which interpolates unstructured multi-variate data onto a grid, by triangulating the input
data with Qhull, then performing piecewise linear barycentric interpolation on each triangle. Due to discretization in
the 𝜓 fields that produced the forward transformation, there are voxels outside the convex hull of the points that are not
able to be linearly interpolated. To fill these values in, we make use of the griddata function with nearest neighbour
interpolation instead. Note that this produces singularities in the warp (since points outside the convex hull have the
same destination as the nearest convex hull point, but this is strictly limited to the edges of the hippocampus, and have
little practical implications in our experience. After linear and nearest neighbour interpolation, the final warp field is
produced:

𝑇 𝑠𝑢𝑟𝑓
u→x = 𝑇 𝑖𝑚𝑔

x→u.

Altogether, this provides transformations to warp either images or surfaces, in either direction (that is, native to un-
folded, or unfolded to native). Image warps are defined using ITK format standards (Left-posterior-superior, or LPS
coordinate system), and thus are compatible with existing tools (e.g. ANTS) to perform the transformation, or to con-
catenate transforms. The surface warps use a different coordinate system (Right-anterior-superior, or RAS coordinate
system), for compatibility with the Connectome Workbench surface-apply-warpfield function, that operates on GIFTI
files.

10.1.7 Standard surface meshes

Since the unfolding produces individual warps that can be used to transform surfaces from the unfolded domain to any
individual native domain, we can produce a standardized mesh in the unfolded space (e.g. spanning a 2-D plane at a
constant𝑤 = 𝐶 laminar level), and transform this to each hippocampus to generate a native-space hippocampal surface
mesh, with 1-1 correspondence in vertices across hippocampi.

Our previous work made use of a spatially-uniform triangulated mesh in the unfolded space, now referred to as the
unfoldiso mesh. Triangles in this mesh have equal size in the unfolded domain, however, when transformed to a subject’s
native space, distortions in triangle size are produced. To address this, we triangulated surfaces with an locally-adaptive
number of points, where the spacing of the points was calculated to obtain approximately equal vertex spacing once
transformed to the native space. The surface areas and vertex spacing were optimized on the Human Connectome
Project Unrelated 100 subset, by transforming the unfoldiso surface, calculating the average area and spacing over all
100 subjects, then generating a range of triangular meshes with adaptive spacing. We selected meshes with mean vertex
spacing close to 2mm, 1mm, and 0.5mm for our standard meshes.

60 Chapter 10. Algorithmic details

https://www.qhull.org

HippUnfold Documentation

10.1.8 Subfield segmentation

Subfield atlases in HippUnfold are now defined in the volumetric unfolded space, and are propagated to individual
images or surfaces with distinct methods. For surface meshes, the subfield volumetric labels are sampled on a standard
surface mesh using the Connectome Workbench function volume-to-surface-mapping, which creates a label GIFTI file
for the surface vertices that is applicable to both unfolded and native surfaces. For volumetric images, it is possible
to simply apply 𝑇 𝑖𝑚𝑔

u→x to the subfield atlas. The current workflow applies an analogous approach, using 𝜓𝐴→𝑃 and
𝜓𝑃→𝐷 to interpolate, as our subfield atlas labels historically existed as surface labels, instead of the current volumetric
labels, but both approaches should yield the same result.

The volumetric subfield labels are then modified to override the 𝐿𝑆𝑅𝐿𝑀 , 𝐿𝐶𝑦𝑠𝑡, and 𝐿𝐷𝐺 labels from the tissue
segmentation, since these labels are not included in the subfield atlas.

10.1.9 Dentate gyrus unfolding

Unfolding for the dentate gyrus conceptually identical to the hippocampus, however, the 𝜓𝐼→𝑂 and 𝜓𝑃→𝐷 fields are
swapped, since the dentate gyrus tissue is topologically-perpendicular to the rest of the hippocampus.

Furthermore, because the dentate gyrus is a much smaller structure than the hippocampus, solving Laplace’s equation
for each individual hippocampus can be challenging if the spatial resolution is limited. Thus instead, we solely make use
of the template shape injection, and use the pre-computed Laplace solution, 𝜓𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, to define the coordinates. Also,
for the pre-computed solution, the 𝜓𝐴→𝑃 field is computed from the hippocampus (since this coordinate is naturally
constrained to be identical for both structures).

10.1. Hippocampal unfolding 61

HippUnfold Documentation

62 Chapter 10. Algorithmic details

CHAPTER

ELEVEN

OUTPUT FILES

The PATH_TO_OUTPUT_DIR folder contains a logs and work folder for troubleshooting, but for most purposes all the
outputs of interest will be in a subfolder called hippunfold with the following structure:

hippunfold/
sub-{subject}

anat
coords
qc
surf
warps

Briefly, anat contains preprocessed volumetric input images and output segmentations in nifti format, surf contains
surface data in gifti format, coords contain Laplace fields spanning the hippocampus, warps contains transformations
between unfolded and native or ‘unfolded’ space, and qc contains snapshots and useful diagnostic information for
quality control.

11.1 anat

This folder contains input anatomical images that have been non-uniformity corrected, motion-corrected, and, where
appropriate, averaged and registered. In this example, a T1w image was used as a standard reference image, but a T2w
was also registered and used in tissue segemntation:

sub-001
anat

sub-001_desc-preproc_T1w.nii.gz
sub-001_space-T1w_desc-preproc_T2w.nii.gz
sub-001_hemi-R_space-T1w_desc-subfields_atlas-bigbrain_dseg.nii.gz
sub-001_hemi-R_space-cropT1w_desc-preproc_T2w.nii.gz
sub-001_hemi-R_space-cropT1w_desc-subfields_atlas-bigbrain_dseg.nii.gz

As per BIDS guidelines, desc-preproc refers to preprocessed input images, space-T1w refers to the volume to which
the image is registered, hemi refers to the left or right hemisphere (only shown for the right in this example), and dseg
(discrete-segmentation) images with desc-subfields contains subfield labels (coded as integers as described in the
included volumes.tsv file). The subfield atlas used will also be included, by default as atlas-bigbrain. Note that
HippUnfold does most intermediate processing in an unshown (available in the work/ folder) space-corobl which is
cropped, upsampled, and rotated. Downsampling to the original T1w space can thus degrade the results and so they are
also provided in a higher resolution space-cropT1w space which is ideal for conducting volumetry or morphometry
measures with high precision and detail.

63

HippUnfold Documentation

For example, the following image shows a whole-brain T1w image, a space-cropT1w overlay of the upsampled T2w
image (centre square), and a similarly upsampled output subfield segmentation (colour).

11.2 surf

11.2.1 surface meshes

Surface meshes (geometry files) are in .surf.gii format, and are provided in both the native space (space-T1w) and
the unfolded space (space-unfolded). In each space, there are inner, midthickness, and outer surfaces, which
correspond to white, midthickness, and pial for cortical surfaces:

sub-{subject}
surf

sub-001_hemi-R_space-{T1w,unfolded}_den-0p5mm_{inner,midthickness,outer}.surf.
→˓gii

The following shows surfaces inner, midthickness, and outer in yellow, orange, and red, respectively.

64 Chapter 11. Output Files

HippUnfold Documentation

11.2.2 surface densities

Surfaces are provided in different density configurations, and are labelled based on the approximate vertex spacing in
each. The default density is 0p5mm, which has an approximate vertex spacing of 0.5mm. There are also 1mm and 2mm
surfaces which have 1mm or 2mm spacing, respectively (suitable for lower-resolution BOLD data). Previous versions of
hippunfold exclusively used a unfoldiso template surface, formed by a 254x126 grid in the unfolded space, however
a downside of this template is that it results in very non-uniform vertex spacing when transformed to the native space.
The newer 0p5mm, 1mm and 2mm surfaces are designed to have closer to uniform vertex spacing in native space, though
vertex spacing will not remain uniform when unfolded. This is illustrated in the the following den-1mm mesh in folded
and unfolded space.

All surfaces of the same density (e.g. 1mm), in both space-T1w and space-unfolded, share the same mesh topology
and have corresponding vertices with each other. The vertex locations for unfolded surfaces are identical for all subjects
as well (note that this of course is not the case for the space-T1w surfaces).

11.2. surf 65

HippUnfold Documentation

11.2.3 surface metrics

In addition to the geometry files, surface-based shape metrics are provided in .shape.gii format. The thickness,
curvature and surface area are computed using the same methods as cortical surfaces, based on the surface geometry
files, and are provided in the T1w space. The gyrification metric is the ratio of native to unfolded surface area, or
equivalently, the scaling or distortion factor when unfolding:

sub-{subject}
surf

sub-001_hemi-{L,R}_space-T1w_den-0p5mm_label-hipp_{thickness,curvature,
→˓gyrification}.shape.gii

sub-001_hemi-{L,R}_space-T1w_den-0p5mm_label-dentate_{curvature,gyrification}.
→˓shape.gii

These metrics are shown in both folded and unfolded space in the images below. Note that these results are from
group-averaged data and so individual subject maps may show considerably more variability.

11.2.4 surface labels

The subfield labels from unfolded atlases are also provided for each subject, in .label.gii format. Analogous to the
volume-based labels, the name of the atlas (default: bigbrain) is in the file name.

sub-{subject}
surf

sub-001_hemi-{L,R}_space-T1w_den-0p5mm_label-hipp_atlas-bigbrain_subfields.
→˓label.gii

11.2.5 cifti files

In addition to lateralized .shape.gii and .label.giimetrics and labels, we also provide data mapped to hippocampi
from hemispheres in a single file using the corresponding CIFTI formats, .dscalar.nii and .dlabel.nii. Note:
since CIFTI does not support hippocampus surfaces (yet), we make use of the CORTEX_LEFT and CORTEX_RIGHT labels
for the hippocampal surfaces.

sub-{subject}
surf

sub-001_space-T1w_den-0p5mm_label-{hipp,dentate}_{thickness,curvature,
→˓gyrification}.dscalar.nii

sub-001_space-T1w_den-0p5mm_label-hipp_atlas-bigbrain_subfields.dlabel.nii

66 Chapter 11. Output Files

HippUnfold Documentation

11.2.6 spec files

Finally, these files are packaged together for easy viewing in Connectome Workbench, wb_view, in the following .spec
files, for each hemisphere and structure separately, and combined:

sub-{subject}
surf

sub-001_hemi-{L,R}_space-T1w_den-0p5mm_label-{hipp,dentate}_surfaces.spec
sub-001_space-T1w_den-0p5mm_label-{hipp,dentate}_surfaces.spec

11.2.7 New: label-dentate

HippUnfold v1.0.0 introduces label-dentate files which represent a distinct surface making up the dentate gyrus
(reflecting its distinct topology from the rest of the cortex). The rest of the surfaces are given the name label-hipp
to differentiate them from these new files.

These are illustrated in the following image (orange represents the usual hippocampal midthickness surface, while
violet shows the new dentate surface):

Note that the dentate uses the same unfolding methods as the rest of the hippocampus, but with several caveats. Given
its small size, its boundaries are not easily deliminated and so inner, outer, and thickness gifti surfaces are omitted.
Furthermore, Laplace coordinates and therefore vertex spacing are not guaranteed to be topologically equivalent as they
are obtained through volumetric registration with the template shape injection step of this workflow.

Corresponding coords and warp files are also generated.

11.2. surf 67

HippUnfold Documentation

11.2.8 New: myelin maps

If your dataset has T1w and T2w images (and you are using --modality=T1w or --modality=T2w), then you can
enable the generation of myelin maps as the ratio of T1w over T2w images. This division is done in the corobl space,
and provides myelin.shape.gii surface metrics, and also includes these in the CIFTI and spec files.

This option is enabled with the --generate-myelin-maps command-line option.

11.3 coords

Hippunfold also provides images that represent anatomical gradients along the 3 principal axes of the hippocampus,
longitudinal from anterior to posterior, lamellar from proximal (dentate gyrus) to distal (subiculum), and laminar from
inner (SRLM) to outer. These are provided in the images suffixed with coords.nii.gz with the direction indicated by
dir-{direction} as AP, PD or IO, and intensities from 0 to 1, e.g. 0 representing the Anterior end and 1 the Posterior
end.

Here is an example showing coronal slices of the hippocampus with the PD, IO, and AP (sagittal slice) overlaid.

Note that these images have been resampled to space-corobl which is the space in which most processing is done
internally. These can be seen in the work/ output directory or specified as a possible output space.

11.4 warps

ITK transforms to warp images between the T1w space to the unfolded space, are provided for each hippocampus:

sub-{subject}
seg

sub-001_hemi-R_from-T1w_to-unfold_mode-image_xfm.nii.gz
sub-001_hemi-R_from-unfold_to-T1w_mode-image_xfm.nii.gz

These are ITK transforms that can transform any image that is in T1w space (can be any resolution and FOV, as long as
aligned to T1w), to the unfolded hippocampal volume space, and vice-versa. You can use the warp itself as a reference
image, e.g.:

antsApplyTransforms -d 3 \
-i sub-001_space-T1w_FA.nii.gz \
-o sub-001_hemi-L_space-unfolded_FA.nii.gz \
-t sub-001_hemi-L_from-T1w_to-unfold_mode-image_xfm.nii.gz \
-r sub-001_space-unfolded_refvol.nii.gz

68 Chapter 11. Output Files

HippUnfold Documentation

11.5 Additional Files

The top-level PATH_TO_OUTPUT_DIR contains additional folders:

hippunfold
logs
work
.snakemake

The hidden .snakemake folder contains a record of the code and parameters used, and paths to the inputs.

Workflow steps that write logs to file are stored in the logs subfolder, with file names based on the rule wildcards (e.g.
subject, hemi, etc..).

Intermediate files are stored in the work folder. These files and folders, similar to results, are generally named according
to BIDS. This folder will have tar.gz files for each subject, unless the --keep_work option is used.

If the app is run in workflow mode (--workflow-mode/-W) which enables direct use of the snakemake CLI to run
hippunfold, the hippunfold and work folders will be placed in a results folder.

11.5. Additional Files 69

HippUnfold Documentation

70 Chapter 11. Output Files

CHAPTER

TWELVE

VISUALIZATION

12.1 Freeview (volumes and surfaces)

Freeview is a powerful viewer that works well with both volume and surface data. It (currently) has several quirks
worth noting, such as:

• All surfaces should be loaded before volumes (otherwise their orientation will be incorrect).

• Loading surface metric data can be difficult, see the examples below.

• Crashes can still occur occasionally, especially when trying to load surfaces or surface overlay data with the
incorrect buttons.

12.1.1 The example below will act as a guide to avoid common mistakes:

• open Freeview by simple typing freeview in the command line.

• Add a hippunfold surface: File > Load Surface > Navigate to a surface (eg. hippunfold/sub-01/surf/
sub-02_hemi-L_space-T1w_den-0p5mm_label-hipp_midthickness.surf.gii).

• Add the correponding T1w image: File > Load Volume > Navigate to a volume (eg. hippunfold/sub-01/
anat/sub-02_desc-preproc_T1w.nii.gz). You should now see a hippocampal surface projected onto the
coronal, sagittal, and axials views over a T1w image. You should also see a 3D model of the hippocampus. You
can toggle visibility of each file by unticking or ticking it in the left panel. You can also adjust the ordering ov
overlays here.

• Add shape data as an overlay on the midthickness surface: With the surface file selected, use the left infor-
mation panel to select Overlay > Load Generic and navigate to a metric file (eg. hippunfold/sub-01/surf/
sub-02_hemi-L_space-T1w_den-0p5mm_label-hipp_gyrification.shape.gii). You should now have
a Configure button which you can use to adjust the windowing and colormap of this data.

• Subfield labels (.label.gii files) can be loaded similarly to metric data, but using the Annotation button on
the left panel instead of Overlay.

• Add a segmentation image (eg. hippunfold/sub-01/anat/sub-01_hemi-L_space-cropT1w_desc-subfield_dseg.
nii.gz). On the left panel, set Colormap > Lookup Table and then Select Lookup Table > Load
Lookup Table > Navigate to YOUR_HIPPUNFOLD_INSTALLATION_DIRECTORY/hippunfold/resources/
desc-subfields_freeview_desg.tsv. You should now see standardized subfield colours and names in the
bottom panel when you mouse over a given subfield.

71

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide/FreeviewGeneralUsage

HippUnfold Documentation

12.1.2 Other visualization tips and tricks:

• Consider adding dentate surfaces (label-dentate), unfolded surfaces (space-unfolded), or other overlay
data (eg. thickness).

• Ensure surfaces and metric data are sampled with the same number of vertices (eg. label-hipp and den-
‘0p5mm’), and note that folded and unfolded surfaces will appear far apart in the 3D viewer and so you may
need to zoom out quite far to navigate to them.

• Any metric data loaded on a folded (eg. space-T1w) surface can also be viewed on an unfolded surface that has
the same number of vertices.

• Add Laplace coordinates (eg. hippunfold/sub-01/coords/sub-01_dir-AP_hemi-L_space-cropT1w_label-hipp_desc-laplace_coords.
nii.gz) over your T1w image, then set the minimum windowing to 0.001 and tick the box Clear background
in the left panel to maintain visibility of the T1w underlay.

• Note that space-T1w and space-cropT1w should appear in equivalent positions in Freeview, despite having a
different field of view and resolution. If loading these data into Matlab or Python, you will need to first resample
these images to the same reference image in order to index voxels from equivalent points.

12.2 HippUnfold Toolbox

The HippUnfold Toolbox provides examples and functions for mapping data onto hippocampal surfaces, plotting sur-
faces, and performing comparisons or statistical tests between subjects. Note that this can be done in other programs,
like Connectome workbench, but these Python & Matlab tools should give an idea of how this can be done in a fully
customizable fashion.

12.3 ITK-SNAP (volumes)

ITK-SNAP is a lightweight tool able to quickly open volumes, and is ideal for manual segmentation or edits. Segmen-
tation images (_dseg.nii.gz) can be loaded as overlays and ITK-SNAP will create a 3D rendering of the contours of
each label. Use the space-cropT1w or space-cropT2w images in the anat/ folder to visualize one hemisphere at a
time.

12.4 Connectome Workbench (surfaces)

Connectome Workbench view tool allows for advanced visualization of surfaces and surface data. Loading one of the
.spec files produced by HippUnfold into wb_view will allow you to visualize the hippocampus in native and unfolded
configurations, and also overlay metric and label data (e.g. subfields and thickness).

72 Chapter 12. Visualization

https://github.com/jordandekraker/hippunfold_toolbox
http://www.itksnap.org/pmwiki/pmwiki.php
https://www.humanconnectome.org/software/connectome-workbench

CHAPTER

THIRTEEN

CONTRIBUTING TO HIPPUNFOLD

Hippunfold dependencies are managed with Poetry, which you’ll need installed on your machine. You can find instruc-
tions on the poetry website.

Note: These instructions are only recommended if you are making changes to HippUnfold code to commit back to this
repository, or if you are using Snakemake’s cluster execution profiles. If not, it is easier to run HippUnfold when it is
packaged into a single singularity container (e.g. docker://khanlab/hippunfold:latest).

13.1 Set-up your development environment:

Clone the repository and install dependencies and dev dependencies with poetry:

git clone http://github.com/khanlab/hippunfold
cd hippunfold
poetry install

Poetry will automatically create a virtual environment. To customize where these virtual environments are stored see
poetry docs here

Then, you can run hippunfold with:

poetry run hippunfold

or you can activate a virtualenv shell and then run hippunfold directly:

poetry shell
hippunfold

You can exit the poetry shell with exit.

13.2 Running code format quality checking and fixing:

Hippunfold uses poethepoet as a task runner. You can see what commands are available by running:

poetry run poe

We use black and snakefmt to ensure formatting and style of python and Snakefiles is consistent. There are two task
runners you can use to check and fix your code, and can be invoked with:

73

https://python-poetry.org/docs/master/#installation
https://python-poetry.org/docs/configuration/
https://github.com/nat-n/poethepoet

HippUnfold Documentation

poetry run poe quality_check
poetry run poe quality_fix

Note that if you are in a poetry shell, you do not need to prepend poetry run to the command.

13.3 Dry-run testing your workflow:

Using Snakemake’s dry-run option (--dry-run/-n) is an easy way to verify any changes to the workflow are working
correctly. The test_data folder contains a number of fake bids datasets (i.e. datasets with zero-sized files) that are
useful for verifying different aspects of the workflow. These dry-run tests are part of the automated github actions that
run for every commit.

You can use the hippunfold CLI to perform a dry-run of the workflow, e.g. here printing out every command as well:

hippunfold test_data/bids_singleT2w test_out participant --modality T2w -np

As a shortcut, you can also use snakemake instead of the hippunfold CLI, as the snakebids.yml config file is set-up
by default to use this same test dataset, as long as you run snakemake from the hippunfold folder that contains the
workflow folder:

cd hippunfold
snakemake -np

13.4 Instructions for Compute Canada

This section provides an example of how to set up a pip installed copy of HippUnfold on Compute Canada’s
graham cluster.

13.4.1 Setting up a dev environment on graham:

Here are some instructions to get your python environment set-up on graham to run HippUnfold:

1. Create a virtualenv and activate it:

mkdir $SCRATCH/hippdev
cd $SCRATCH/hippdev
module load python/3.8
virtualenv venv
source venv/bin/activate

2. Install HippUnfold

git clone https://github.com/khanlab/hippunfold.git
pip install hippunfold/

3. To run Hippunfold on Graham as a member of the Khan lab, please configure the neuroglia-helpers with the
khanlab profile.

4. To avoid having to download trained models (see section below), you can set an environment variable in your
bash profile (~/.bash_profile) with the location of the trained models. For Khan lab’s members, the following
line must be add to the bash profile file:

74 Chapter 13. Contributing to Hippunfold

https://github.com/khanlab/neuroglia-helpers

HippUnfold Documentation

export HIPPUNFOLD_CACHE_DIR="/project/6050199/akhanf/opt/hippunfold_trained_models"

Note: make sure to reload your bash profile if needed (source ~./bash_profile).

5. For an easier execution in Graham, it’s recommended to also install cc-slurm snakemake profile for cluster exe-
cution with slurm.

Note if you want to run hippunfold with modifications to your cloned repository, you either need to pip install again,
or run hippunfold the following, since an editable pip install is not allowed with pyproject:

python <YOUR_HIPPUNFOLD_DIR>/hippunfold/run.py

13.4.2 Running hippunfold jobs on graham:

Note that this requires neuroglia-helpers for regularSubmit or regularInteractive wrappers, and the cc-slurm snakemake
profile for cluster execution with slurm.

In an interactive job (for testing):

regularInteractive -n 8
hippunfold <PATH_TO_BIDS_DIR> <PATH_TO_OUTPUT_DIR> participant \
--participant_label 001 -j 8 --modality T1w --use-singularity \
--singularity-prefix $SNAKEMAKE_SINGULARITY_DIR

Where:

• --participant_label 001 is used to specify only one subject from a BIDS directory presumeably containing
many subjects.

• -j 8 specifies the number of cores used

• --modality T1w is used to specify that a T1w dataset is being processed

• --singularity-prefix $SNAKEMAKE_SINGULARITY_DIR specifies the directory in which singularity images
will be stored. The environment variable is created when installing neuroglia-helpers.

Submitting a job (for larger cores, more subjects), still single job, but snakemake will parallelize over the 32 cores:

regularSubmit -j Fat \
hippunfold PATH_TO_BIDS_DIR PATH_TO_OUTPUT_DIR participant -j 32 \
--modality T1w --use-singularity --singularity-prefix $SNAKEMAKE_SINGULARITY_DIR

Scaling up to ~hundred subjects (needs cc-slurm snakemake profile installed), submits 1 16core job per subject:

hippunfold PATH_TO_BIDS_DIR PATH_TO_OUTPUT_DIR participant \
--modality T1w --use-singularity --singularity-prefix $SNAKEMAKE_SINGULARITY_DIR \
--profile cc-slurm

Scaling up to even more subjects (uses group-components to bundle multiple subjects in each job), 1 32core job for N
subjects (e.g. 10):

hippunfold PATH_TO_BIDS_DIR PATH_TO_OUTPUT_DIR participant \
--modality T1w --use-singularity --singularity-prefix $SNAKEMAKE_SINGULARITY_DIR \
--profile cc-slurm --group-components subj=10

13.4. Instructions for Compute Canada 75

https://github.com/khanlab/cc-slurm
https://github.com/khanlab/neuroglia-helpers
https://github.com/khanlab/cc-slurm

HippUnfold Documentation

13.4.3 Running hippunfold jobs on the CBS server

1. Clone the repository and install dependencies and dev dependencies with poetry:

git clone http://github.com/khanlab/hippunfold
cd hippunfold
poetry install

If poetry is not installed, please refer to the installation documentation. If the command poetry is not found, add the
following line to your bashrc file located in your home directory (considering that the poetry binary is located under
$HOME/.local/bin:

export PATH=$PATH:$HOME/.local/bin

2. To avoid having to download containers and trained models (see section below), add the
$SNAKEMAKE_SINGULARITY_DIR and $HIPPUNFOLD_CACHE_DIR environment variables to the bashrc
file. For Khan lab’s members, add the following lines:

export SNAKEMAKE_SINGULARITY_DIR="/srv/khan/shared/containers/snakemake_containers"
export HIPPUNFOLD_CACHE_DIR="/srv/khan/shared/data/hippunfold_models"

This will work only if the setup_automount_v2 script was already executed. 3. HippUnfold might be executed using
poetry run hippunfold <arguments> or through the poetry shell method. Refer to previous section for more
information in regards to execution options.

4. On the CBS server you should always set your output folder to a path inside /localscratch, and not your home
folder or a /srv or /cifs path, and copy the final results out after they have finished computing. Please be aware
that the CBS server may not be the most efficient option for running a large number of subjects (since you are
limited in processing cores vs a HPC cluster).

5. If you are using input files in your home directory (or in your graham mount in your home directory), you may
also need to also add the following to your bashrc file (Note: this will become a default system-enabled option
soon)

export SINGULARITY_BINDPATH="/home/ROBARTS:/home/ROBARTS"

13.5 Deep learning nnU-net model files

The trained model files we use for hippunfold are large and thus are not included directly in this github repository, and
instead are downloaded from Zenodo releases. If you are using the docker/singularity container, docker://khanlab/
hippunfold, they are pre-downloaded there, in /opt/hippunfold_cache.

If you are not using this container, you will need to download the models before running hippunfold, by running:

hippunfold_download_models

This console script (installed when you install hippunfold) downloads all the models to a cache dir on your system,
which on Linux is typically ~/.cache/hippunfold. To override this, you can set the HIPPUNFOLD_CACHE_DIR
environment variable before running hippunfold_download_models and hippunfold.

76 Chapter 13. Contributing to Hippunfold

https://python-poetry.org/docs/

HippUnfold Documentation

13.6 Overriding Singularity cache directories

By default, singularity stores image caches in your home directory when you run singularity pull or singularity
run. As described above, hippunfold also stores deep learning models in your home directory. If your home directory
is full or otherwise inaccessible, you may want to change this with the following commands:

export SINGULARITY_CACHEDIR=/YOURDIR/.cache/singularity
export SINGULARITY_BINDPATH=/YOURDIR:/YOURDIR
export HIPPUNFOLD_CACHE_DIR=/YOURDIR/.cache/hippunfold/

If you are running hippunfold with the --use-singularity option, hippunfold will download the required singu-
larity containers for rules that require it. These containers are placed in the .snakemake folder in your hippunfold
output directory, but this can be overriden with the Snakemake option: --singularity-prefix DIRECTORY

13.6. Overriding Singularity cache directories 77

	Installation
	Requirements
	Notes:

	Comparison of methods for running HippUnfold
	CBRAIN Web-based Platform
	Pros:
	Cons:

	Docker on Windows/Mac (Intel)/Linux
	Pros:
	Cons:

	Singularity Container
	Pros:
	Cons:

	Python Environment with Singularity Dependencies
	Pros:
	Cons:

	Running HippUnfold with Docker
	Running HippUnfold with Singularity
	Pre-requisities:
	First time setup
	Running an example
	Exploring different options

	Running HippUnfold with a Vagrant VM
	Install VirtualBox and Vagrant
	Create a Vagrant Box
	Download the test dataset
	Download the HippUnfold container
	Run HippUnfold

	Command-line interface
	HippUnfold Command-line interface
	STANDARD
	SNAKEBIDS
	BIDS FILTERS
	INPUT WILDCARDS
	PATH OVERRIDE

	Snakemake command-line interface
	EXECUTION
	GROUPING
	REPORTS
	NOTEBOOKS
	UTILITIES
	OUTPUT
	BEHAVIOR
	CLUSTER
	KUBERNETES
	TIBANNA
	GOOGLE_LIFE_SCIENCE
	TES
	CONDA
	SINGULARITY
	ENVIRONMENT MODULES

	Running HippUnfold on your data
	Selecting the modality to use
	Selecting and excluding subjects to process
	Known limitations for BIDS parsing
	Parsing Non-BIDS datasets with custom paths
	Prerequisities for using custom path parsing:

	Specialized scans
	Case 1: super high resolution
	Case 2: one ex-vivo hemisphere

	Frequently asked questions
	Why is the workflow stopping at the run_inference step?
	Why do I get the error, No input images found for T1w, or No input images found for T2w

	Pipeline Details
	Overall workflow
	Pre-processing
	T1w pre-processing
	T2w pre-processing
	T2w with T1w template registration

	U-net segmentation
	Template-based shape injection
	Laplace & equivolume coordinates
	Subfields processing
	Generating warp files
	Surface processing
	Additional steps

	Algorithmic details
	Hippocampal unfolding
	Template-based shape injection
	Fast marching initialization
	Solving Laplace’s equation
	Equivolumetric laminar coordinates
	Warps for unfolding
	Forward warps
	Warps for surfaces and images

	Inverse warps
	Standard surface meshes
	Subfield segmentation
	Dentate gyrus unfolding

	Output Files
	anat
	surf
	surface meshes
	surface densities
	surface metrics
	surface labels
	cifti files
	spec files
	New: label-dentate
	New: myelin maps

	coords
	warps
	Additional Files

	Visualization
	Freeview (volumes and surfaces)
	The example below will act as a guide to avoid common mistakes:
	Other visualization tips and tricks:

	HippUnfold Toolbox
	ITK-SNAP (volumes)
	Connectome Workbench (surfaces)

	Contributing to Hippunfold
	Set-up your development environment:
	Running code format quality checking and fixing:
	Dry-run testing your workflow:
	Instructions for Compute Canada
	Setting up a dev environment on graham:
	Running hippunfold jobs on graham:
	Running hippunfold jobs on the CBS server

	Deep learning nnU-net model files
	Overriding Singularity cache directories

