[09c10e]: / unit_tests.py

Download this file

318 lines (278 with data), 11.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#unit_tests.py
#Copyright (c) 2020 Rachel Lea Ballantyne Draelos
#MIT License
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE
import os
import copy
import pickle
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import evaluate
from load_dataset import custom_datasets
from load_dataset import utils
#################
# Test utils.py #---------------------------------------------------------------
#################
x = np.array([[[1,2],[3,4]],
[[-1,-2],[-3,-4]],
[[6,2],[1,9]],
[[5,3],[1,1]],
[[8,8],[4,7]]]) #shape (5, 2, 2)
def test_pad_slices_and_sides():
global x
out = utils.pad_slices(x, 6)
cor = np.array([[[1,2],[3,4]],
[[-1,-2],[-3,-4]],
[[6,2],[1,9]],
[[5,3],[1,1]],
[[8,8],[4,7]],
[[-4,-4],[-4,-4]]])
assert arrays_equal(out, cor)
z = copy.deepcopy(x)
z[0,0,0] = -10
out2 = utils.pad_sides(z, 3)
cor2 = np.array([[[-10,2,-10],[3,4,-10],[-10,-10,-10]],
[[-1,-2,-10],[-3,-4,-10],[-10,-10,-10]],
[[6,2,-10],[1,9,-10],[-10,-10,-10]],
[[5,3,-10],[1,1,-10],[-10,-10,-10]],
[[8,8,-10],[4,7,-10],[-10,-10,-10]]])
assert arrays_equal(out2, cor2)
print('Passed test_pad_slices_and_sides()')
def test_sliceify():
global x
out = utils.sliceify(utils.pad_slices(x, 6))
cor = np.array([[[[1,2],[3,4]],
[[-1,-2],[-3,-4]],
[[6,2],[1,9]]],
[[[5,3],[1,1]],
[[8,8],[4,7]],
[[-4,-4],[-4,-4]]]])
assert arrays_equal(out, cor)
assert cor.shape == (2, 3, 2, 2)
print('Passed test_sliceify()')
def test_normalize():
lower_bound = -1000
upper_bound = 200
test = np.reshape(np.array([500,3000,-150,-1000,-1500,130]), (6,1,1))
out = utils.normalize(torch.Tensor(test), lower_bound = lower_bound, upper_bound = upper_bound)
cor = np.reshape(np.array([1,1,0.70833333,0,0,0.941666666]), (6,1,1))
assert arrays_equal(out.numpy(), cor)
print('Passed test_normalize()')
def test_crop_specified_axis():
ctvol = np.array([[[1],[2],[3]],
[[4],[5],[6]],
[[7],[8],[9]]])
out = utils.crop_specified_axis(copy.deepcopy(ctvol), max_dim=2, axis=0)
cor = np.array([[[1],[2],[3]],
[[4],[5],[6]]])
assert arrays_equal(out, cor)
out2 = utils.crop_specified_axis(copy.deepcopy(ctvol), max_dim=1, axis=1)
cor2 = np.array([[[2]],[[5]],[[8]]])
assert arrays_equal(out2,cor2)
ctvol = np.array([[ [0,1,2], [3,4,5] ],
[ [6,7,8], [9,10,11] ],
[ [12,13,14], [15,16,17] ]])
out3 = utils.crop_specified_axis(copy.deepcopy(ctvol), max_dim=2, axis=2)
cor3 = np.array([[ [0,1], [3,4] ],
[ [6,7], [9,10] ],
[ [12,13], [15,16] ]])
assert arrays_equal(out3,cor3)
print('Passed test_crop_specified_axis()')
###################
# Test evalute.py #-------------------------------------------------------------
###################
def test_calculate_top_k_accuracy():
tl1 = np.array([0,0,0,0,1])
pp1 = np.array([0,0,0,0,0.99])
assert (1 - evaluate.calculate_top_k_accuracy(tl1, pp1, 1)) < 1e-6
assert (1 - evaluate.calculate_top_k_accuracy(tl1, pp1, 15)) < 1e-6
tl2 = np.array([1,0,0,1,1,0,0,0,0,1,0,0,0,1,1,0,0,0,0,1,1,1])
pp2 = np.array([0.91,0.22,0.11,0.33,0.98,0.75,0.36,0.28,0.02,0.995,
0.55,0.87,0.03,0.40,0.41,0.67,0.25,0.39,0.08,0.833,0.74,0.765])
assert (1 - evaluate.calculate_top_k_accuracy(tl2, pp2, 1)) < 1e-6
assert (0.75 - evaluate.calculate_top_k_accuracy(tl2, pp2, 4)) < 1e-6
assert (8.0/9.0 - evaluate.calculate_top_k_accuracy(tl2, pp2, 14)) < 1e-6
assert (1 - evaluate.calculate_top_k_accuracy(tl2, pp2, 20)) < 1e-6
print('Passed test_calculate_top_k_accuracy()')
###########################
# Test model-related code #-----------------------------------------------------
###########################
def test_reshape_and_view():
"""Ensure that reshaping and viewing using numpy and torch has the desired
effects. Needed in order to use pretrained 2D feature extractor on a 3D
network"""
device = torch.device('cuda:0')
x_orig = np.random.rand(6,140,3,50,50) #batch size, height, channels, squareside, squareside
x = torch.from_numpy(x_orig).squeeze().type(torch.float)
#does torch view reverse numpy reshape?:
s = x.shape
x = np.reshape(x, (s[0]*s[1],s[2],s[3],s[4]))
x = x.to(device)
x = x.view(6,140,3,50,50)
xout1 = x.cpu().numpy()
assert arrays_equal(xout1, x_orig)
#Does torch reverse itself?
x = x.view(6,140*3*50*50)
x = x.view(6,140,3,50,50)
xout2 = x.cpu().numpy()
assert arrays_equal(xout2, x_orig)
print('Passed test_reshape_and_view()')
def test_reshape_and_view_resnet18_batch():
#batch size 2
x = torch.Tensor(np.random.rand(2,13,3,42,42))
shape = list(x.size())
batch_size = int(shape[0])
y = x.view(batch_size*13, 3, 42, 42)
y = y.view(batch_size, 13, 3, 42, 42)
assert int((x == y).all())==1
z = x.view(batch_size,13*3*42*42)
z = z.view(batch_size,13,3,42,42)
assert int((z == x).all())==1
#batch size 1
x = torch.Tensor(np.random.rand(1,13,3,42,42))
shape = list(x.size())
batch_size = int(shape[0])
y = x.view(batch_size*13,3,42,42)
y = y.view(batch_size, 13, 3, 42, 42)
assert int((x==y).all())==1
z = x.view(batch_size,13*3*42*42)
z = z.view(batch_size,13,3,42,42)
assert int((z==x).all())==1
print('Passed test_reshape_and_view_resnet18_batch()')
def test_reshape_and_view_bodyconv():
#Basic test
newx = torch.Tensor(np.random.rand(13,51,14,14))
newx2 = newx.transpose(0,1).unsqueeze(0)
newx2 = newx2.squeeze(0).transpose(0,1)
assert int((newx==newx2).all())==1
mini = torch.Tensor(np.array([[[[5, 8],[3, 7]],
[[2, 2],[8, 3]],
[[1, 9],[4, 5]],
[[3, 9],[7, 9]],
[[3, 2],[6, 6]]],
[[[5, 8],[4, 8]],
[[7, 7],[8, 6]],
[[6, 1],[9, 9]],
[[4, 9],[6, 6]],
[[2, 2],[6, 4]]],
[[[4, 8],[2, 5]],
[[5, 7],[9, 8]],
[[1, 9],[4, 4]],
[[2, 8],[1, 3]],
[[8, 8],[1, 3]]]]))
output = mini.transpose(0,1).unsqueeze(0)
correct = torch.Tensor(np.array([[[[[5, 8],[3, 7]],
[[5, 8],[4, 8]],
[[4, 8],[2, 5]]],
[[[2, 2],[8, 3]],
[[7, 7],[8, 6]],
[[5, 7],[9, 8]]],
[[[1, 9],[4, 5]],
[[6, 1],[9, 9]],
[[1, 9],[4, 4]]],
[[[3, 9],[7, 9]],
[[4, 9],[6, 6]],
[[2, 8],[1, 3]]],
[[[3, 2],[6, 6]],
[[2, 2],[6, 4]],
[[8, 8],[1, 3]]]]]))
assert int((output==correct).all())==1
print('Passed test_reshape_and_view_bodyconv()')
def test_reshape_and_view_pool():
#The right way to think about it is the effective kernel size across
#the 512 dimension, which is in fact 3*3*3=27 (because the kernel size
#is 3 in the 512 direction and its stride in that direction is 3.)
#Don't get distracted by reducingpools2 which are across the 134 dimension.
#So, we actually have (for the 512 direction):
#0-27, 27-54, 54-81, 81-108, 108-135, 135-162, 162-189, 189-216, 216-243,
#243-270, 270-297, 297-324, 324-351, 351-378, 378-405, 405-432, 432-459,
#459-486, 486-513
x = np.zeros([1,134,512,14,14],dtype='int')
x[:,:,14,:,:] = 0; x[:,:,42,:,:] = 1
x[:,:,70,:,:] = 2; x[:,:,98,:,:] = 3
x[:,:,126,:,:] = 4; x[:,:,154,:,:] = 5
x[:,:,182,:,:] = 6; x[:,:,210,:,:] = 7
x[:,:,238,:,:] = 8; x[:,:,266,:,:] = 9
x[:,:,294,:,:] = 10; x[:,:,322,:,:] = 11
x[:,:,348,:,:] = 12; x[:,:,372,:,:] = 13
x[:,:,400,:,:] = 14; x[:,:,420,:,:] = 15
x[:,:,440,:,:] = 16; x[:,:,465,:,:] = 17
#27*18 = 486. If we put any value into 486 or higher, it won't be found in
#the final result, which honestly disturbs me.
#But if we put anything huge into 485 or lower, it will show up in the 17 slot
#in the final output.
x[:,:,486,:,:] = 99999 #doesn't show up in final output which is disturbing
x = torch.Tensor(x)
reducingpools = nn.Sequential(
nn.MaxPool3d(kernel_size = (3,3,3), stride=(3,1,1), padding=0),
nn.ReLU(),
nn.MaxPool3d(kernel_size = (3,3,3), stride=(3,1,1), padding=0),
nn.ReLU(),
nn.MaxPool3d(kernel_size = (3,2,2), stride=(3,2,2), padding=0),
nn.ReLU())
reducingpools2 = nn.Sequential(
nn.MaxPool3d(kernel_size = (8,1,1), stride=(8,1,1), padding=0),
nn.ReLU())
shape = list(x.size())
batch_size = int(shape[0])
x = reducingpools(x)
assert batch_size == 1
x = torch.squeeze(x) #size [134, 18, 5, 5]
x = x.transpose(0,1) #size [18, 134, 5, 5]
x = reducingpools2(x) #Output is [18, 16, 5, 5]
x = x.transpose(0,1) #size [16, 18, 5, 5]
x = x.unsqueeze(0) #size [1, 16, 18, 5, 5]
x = x.contiguous().numpy()
for number in range(0,18):
print(number)
selected = list(set(x[:,:,number,:,:].flatten().tolist()))
print(selected)
assert len(selected)==1, 'len='+str(len(selected))
assert int(selected[0]) == (number), 'int(selected[0])='+str(int(selected[0]))+' number+1='+str(number)
print('Passed test_reshape_and_view_pool()')
########
# Meta #------------------------------------------------------------------------
########
#Function for testing equality of dataframes
def dfs_equal(df1, df2):
assert arrays_equal(df1.values, df2.values, tol = 0)
assert df1.columns.values.tolist()==df2.columns.values.tolist()
assert df1.index.values.tolist()==df2.index.values.tolist()
return True
#Function for testing equality of arrays
def arrays_equal(output, correct, tol = 1e-6):
"""Check if arrays are equal within tolerance <tol>
Note that if <tol>==0 then check that arrays are identical."""
assert output.shape == correct.shape
max_difference = np.amax(np.absolute(output - correct))
if tol == 0:
assert max_difference == 0
else:
assert max_difference < tol
return True
if __name__ == '__main__':
test_reshape_and_view_bodyconv()
test_reshape_and_view_resnet18_batch()
test_reshape_and_view_pool()
test_calculate_top_k_accuracy()
test_normalize()
test_pad_slices_and_sides()
test_sliceify()
test_reshape_and_view()
test_crop_specified_axis()