[6673ef]: / tests / test_model.py

Download this file

238 lines (215 with data), 9.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from __future__ import division, print_function
import unittest
from keras.layers import Input
from keras import backend as K
from rvseg.models import convunet
from rvseg.models import unet
class TestModel(unittest.TestCase):
def test_downsampling(self):
inputs = Input(shape=(28, 28, 1))
filters = 16
padding = 'valid'
x, y = convunet.downsampling_block(inputs, filters, padding)
self.assertTupleEqual(K.int_shape(x), (None, 12, 12, filters))
self.assertTupleEqual(K.int_shape(y), (None, 24, 24, filters))
padding = 'same'
x, y = convunet.downsampling_block(inputs, filters, padding)
self.assertTupleEqual(K.int_shape(x), (None, 14, 14, filters))
self.assertTupleEqual(K.int_shape(y), (None, 28, 28, filters))
def test_downsampling_error(self):
# downsampling should fail on odd-integer dimension images
inputs = Input(shape=(29, 29, 1))
filters = 16
with self.assertRaises(AssertionError):
convunet.downsampling_block(inputs, filters, padding='valid')
with self.assertRaises(AssertionError):
convunet.downsampling_block(inputs, filters, padding='same')
def test_upsampling(self):
# concatenation without cropping
filters = 16
inputs = Input(shape=(14, 14, 2*filters))
skip = Input(shape=(28, 28, filters))
padding = 'valid'
x = convunet.upsampling_block(inputs, skip, filters, padding)
self.assertTupleEqual(K.int_shape(x), (None, 24, 24, filters))
# ((4,4), (4,4)) cropping
filters = 15
inputs = Input(shape=(10, 10, 2*filters))
skip = Input(shape=(28, 28, filters))
padding = 'valid'
x = convunet.upsampling_block(inputs, skip, filters, padding)
self.assertTupleEqual(K.int_shape(x), (None, 16, 16, filters))
# odd-integer input size
filters = 4
inputs = Input(shape=(11, 11, 2*filters))
skip = Input(shape=(28, 28, filters))
padding = 'valid'
x = convunet.upsampling_block(inputs, skip, filters, padding)
self.assertTupleEqual(K.int_shape(x), (None, 18, 18, filters))
# test odd-integer cropping
filters = 5
inputs = Input(shape=(11, 11, 2*filters))
skip = Input(shape=(27, 27, filters))
padding = 'valid'
x = convunet.upsampling_block(inputs, skip, filters, padding)
self.assertTupleEqual(K.int_shape(x), (None, 18, 18, filters))
# test same padding
filters = 5
inputs = Input(shape=(11, 11, 2*filters))
skip = Input(shape=(27, 27, filters))
padding = 'same'
x = convunet.upsampling_block(inputs, skip, filters, padding)
self.assertTupleEqual(K.int_shape(x), (None, 22, 22, filters))
def test_upsampling_error(self):
filters = 2
inputs = Input(shape=(11, 11, 2*filters))
padding = 'valid'
with self.assertRaises(AssertionError):
skip = Input(shape=(21, 22, filters))
x = convunet.upsampling_block(inputs, skip, filters, padding)
with self.assertRaises(AssertionError):
skip = Input(shape=(22, 21, filters))
x = convunet.upsampling_block(inputs, skip, filters, padding)
def test_unet(self):
# classic u-net architecture from
# "U-Net: Convolutional Networks for Biomedical Image Segmentation"
# O. Ronneberger, P. Fischer, T. Brox (2015)
height, width, channels = 572, 572, 1
features = 64
depth = 4
classes = 2
temperature = 1.0
padding = 'valid'
m = unet(height, width, channels, classes, features, depth,
temperature, padding)
self.assertEqual(len(m.layers), 56)
# input/output dimensions
self.assertTupleEqual(K.int_shape(m.input), (None, 572, 572, 1))
self.assertTupleEqual(K.int_shape(m.output), (None, 388, 388, 2))
# layers
layer_output_dims = [
(None, 572, 572, 1), # input
(None, 570, 570, 64),
(None, 570, 570, 64),
(None, 568, 568, 64), # skip 1
(None, 568, 568, 64),
(None, 284, 284, 64), # max pool 2x2
(None, 282, 282, 128),
(None, 282, 282, 128),
(None, 280, 280, 128), # skip 2
(None, 280, 280, 128),
(None, 140, 140, 128), # max pool 2x2
(None, 138, 138, 256),
(None, 138, 138, 256),
(None, 136, 136, 256), # skip 3
(None, 136, 136, 256),
(None, 68, 68, 256), # max pool 2x2
(None, 66, 66, 512),
(None, 66, 66, 512),
(None, 64, 64, 512), # skip 4
(None, 64, 64, 512),
(None, 32, 32, 512), # max pool 2x2
(None, 30, 30, 1024),
(None, 30, 30, 1024),
(None, 28, 28, 1024),
(None, 28, 28, 1024),
(None, 56, 56, 512), # up-conv 2x2
(None, 56, 56, 512), # cropping of skip 4
(None, 56, 56, 1024), # concat
(None, 54, 54, 512),
(None, 54, 54, 512),
(None, 52, 52, 512),
(None, 52, 52, 512),
(None, 104, 104, 256), # up-conv 2x2
(None, 104, 104, 256), # cropping of skip 3
(None, 104, 104, 512), # concat
(None, 102, 102, 256),
(None, 102, 102, 256),
(None, 100, 100, 256),
(None, 100, 100, 256),
(None, 200, 200, 128), # up-conv 2x2
(None, 200, 200, 128), # cropping of skip 2
(None, 200, 200, 256), # concat
(None, 198, 198, 128),
(None, 198, 198, 128),
(None, 196, 196, 128),
(None, 196, 196, 128),
(None, 392, 392, 64), # up-conv 2x2
(None, 392, 392, 64), # cropping of skip 1
(None, 392, 392, 128), # concat
(None, 390, 390, 64),
(None, 390, 390, 64),
(None, 388, 388, 64),
(None, 388, 388, 64),
(None, 388, 388, 2), # output segmentation map
(None, 388, 388, 2),
(None, 388, 388, 2),
]
for layer, shape in zip(m.layers, layer_output_dims):
self.assertTupleEqual(layer.output_shape, shape)
def check_layer_dims(self, model):
# if we include only one of batch normalization or dropout,
# then the shape of the network should be the same.
layer_output_dims = [
(None, 10, 10, 1), # input
(None, 10, 10, 4), # conv2D
(None, 10, 10, 4), # batchnorm | reLU
(None, 10, 10, 4), # reLU | dropout
(None, 10, 10, 4), # conv2D
(None, 10, 10, 4), # batchnorm | reLU
(None, 10, 10, 4), # reLU | dropout
(None, 5, 5, 4), # max pool 2x2
(None, 5, 5, 8), # conv2D
(None, 5, 5, 8), # batchnorm | reLU
(None, 5, 5, 8), # reLU | dropout
(None, 5, 5, 8), # conv2D
(None, 5, 5, 8), # batchnorm | reLU
(None, 5, 5, 8), # reLU | dropout
(None, 10, 10, 4), # up-conv 2x2
(None, 10, 10, 8), # concat
(None, 10, 10, 4), # conv2D
(None, 10, 10, 4), # batchnorm | reLU
(None, 10, 10, 4), # reLU | dropout
(None, 10, 10, 4), # conv2D
(None, 10, 10, 4), # batchnorm | reLU
(None, 10, 10, 4), # reLU | dropout
(None, 10, 10, 2), # output segmentation map
(None, 10, 10, 2), # (temperature)
(None, 10, 10, 2), # softmax
]
for layer, shape in zip(model.layers, layer_output_dims):
self.assertTupleEqual(layer.output_shape, shape)
def test_batchnorm(self):
# only batch norm, no dropout
height, width, channels = 10, 10, 1
features = 4
depth = 1
classes = 2
temperature = 1.0
padding = 'same'
batchnorm = True
dropout = False
m = unet(height, width, channels, classes, features, depth,
temperature, padding, batchnorm, dropout)
self.assertEqual(len(m.layers), 25)
# input/output dimensions
self.assertTupleEqual(K.int_shape(m.input), (None, 10, 10, 1))
self.assertTupleEqual(K.int_shape(m.output), (None, 10, 10, 2))
self.check_layer_dims(m)
def test_dropout(self):
# only dropout, no batch norm
height, width, channels = 10, 10, 1
features = 4
depth = 1
classes = 2
temperature = 1.0
padding = 'same'
batchnorm = False
dropout = True
m = unet(height, width, channels, classes, features, depth,
temperature, padding, batchnorm, dropout)
self.assertEqual(len(m.layers), 25)
# input/output dimensions
self.assertTupleEqual(K.int_shape(m.input), (None, 10, 10, 1))
self.assertTupleEqual(K.int_shape(m.output), (None, 10, 10, 2))
self.check_layer_dims(m)