|
a |
|
b/rvseg/unet-data.py |
|
|
1 |
#!/usr/bin/env python |
|
|
2 |
|
|
|
3 |
from __future__ import division, print_function |
|
|
4 |
|
|
|
5 |
import os, glob |
|
|
6 |
import argparse |
|
|
7 |
from PIL import Image |
|
|
8 |
import patient |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
def generate_unet_data(patient_dirs, x_dir, y_dir, file_format="{:04d}"): |
|
|
12 |
BW_8BIT = 'L' |
|
|
13 |
i = 0 |
|
|
14 |
for patient_dir in patient_dirs: |
|
|
15 |
p = patient.PatientData(patient_dir) |
|
|
16 |
for image, endo in zip(p.images, p.endocardium_masks): |
|
|
17 |
x_outfile = os.path.join(x_dir, file_format.format(i) + ".jpg") |
|
|
18 |
Image.fromarray(image, BW_8BIT).save(x_outfile) |
|
|
19 |
y_outfile = os.path.join(y_dir, file_format.format(i) + ".png") |
|
|
20 |
Image.fromarray(endo, BW_8BIT).save(y_outfile) |
|
|
21 |
i += 1 |
|
|
22 |
|
|
|
23 |
def main(args): |
|
|
24 |
glob_search = os.path.join(args.indir, "patient*") |
|
|
25 |
patient_dirs = glob.glob(glob_search) |
|
|
26 |
|
|
|
27 |
print("Found patient directories:") |
|
|
28 |
for patient_dir in patient_dirs: |
|
|
29 |
print(patient_dir) |
|
|
30 |
|
|
|
31 |
split_index = int((1-args.split/100) * len(patient_dirs)) |
|
|
32 |
train_dirs = patient_dirs[:split_index] |
|
|
33 |
test_dirs = patient_dirs[split_index:] |
|
|
34 |
print("First {} patients used as training set, remaining as test.".format(split_index)) |
|
|
35 |
|
|
|
36 |
x_train = os.path.join(args.outdir, "train/img/0") |
|
|
37 |
y_train = os.path.join(args.outdir, "train/gt/0") |
|
|
38 |
os.makedirs(x_train) |
|
|
39 |
os.makedirs(y_train) |
|
|
40 |
|
|
|
41 |
x_test = os.path.join(args.outdir, "test/img/0") |
|
|
42 |
y_test = os.path.join(args.outdir, "test/gt/0") |
|
|
43 |
os.makedirs(x_test) |
|
|
44 |
os.makedirs(y_test) |
|
|
45 |
|
|
|
46 |
generate_unet_data(train_dirs, x_train, y_train) |
|
|
47 |
generate_unet_data(test_dirs, x_test, y_test) |
|
|
48 |
|
|
|
49 |
|
|
|
50 |
if __name__ == '__main__': |
|
|
51 |
parser = argparse.ArgumentParser(description="Generate data for U-Net from RV MRI dicom images.") |
|
|
52 |
parser.add_argument('indir', default='.', help="TrainingSet/ directory") |
|
|
53 |
parser.add_argument('-o', '--outdir', default='.', help="Directory to write output data") |
|
|
54 |
parser.add_argument('-s', '--split', default=20, type=int, help='Percentage of patients used for test set') |
|
|
55 |
args = parser.parse_args() |
|
|
56 |
main(args) |