/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.VRMLLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.VRMLLoader.prototype = {
constructor: THREE.VRMLLoader,
// for IndexedFaceSet support
isRecordingPoints: false,
isRecordingFaces: false,
points: [],
indexes: [],
// for Background support
isRecordingAngles: false,
isRecordingColors: false,
angles: [],
colors: [],
recordingFieldname: null,
crossOrigin: 'Anonymous',
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new THREE.FileLoader( this.manager );
loader.load( url, function ( text ) {
onLoad( scope.parse( text ) );
}, onProgress, onError );
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
},
parse: function ( data ) {
var texturePath = this.texturePath || '';
var textureLoader = new THREE.TextureLoader( this.manager );
textureLoader.setCrossOrigin( this.crossOrigin );
function parseV2( lines, scene ) {
var defines = {};
var float_pattern = /(\b|\-|\+)([\d\.e]+)/;
var float2_pattern = /([\d\.\+\-e]+)\s+([\d\.\+\-e]+)/g;
var float3_pattern = /([\d\.\+\-e]+)\s+([\d\.\+\-e]+)\s+([\d\.\+\-e]+)/g;
/**
* Vertically paints the faces interpolating between the
* specified colors at the specified angels. This is used for the Background
* node, but could be applied to other nodes with multiple faces as well.
*
* When used with the Background node, default is directionIsDown is true if
* interpolating the skyColor down from the Zenith. When interpolationg up from
* the Nadir i.e. interpolating the groundColor, the directionIsDown is false.
*
* The first angle is never specified, it is the Zenith (0 rad). Angles are specified
* in radians. The geometry is thought a sphere, but could be anything. The color interpolation
* is linear along the Y axis in any case.
*
* You must specify one more color than you have angles at the beginning of the colors array.
* This is the color of the Zenith (the top of the shape).
*
* @param geometry
* @param radius
* @param angles
* @param colors
* @param boolean topDown Whether to work top down or bottom up.
*/
function paintFaces( geometry, radius, angles, colors, topDown ) {
var direction = ( topDown === true ) ? 1 : - 1;
var coord = [], A = {}, B = {}, applyColor = false;
for ( var k = 0; k < angles.length; k ++ ) {
// push the vector at which the color changes
var vec = {
x: direction * ( Math.cos( angles[ k ] ) * radius ),
y: direction * ( Math.sin( angles[ k ] ) * radius )
};
coord.push( vec );
}
var index = geometry.index;
var positionAttribute = geometry.attributes.position;
var colorAttribute = new THREE.BufferAttribute( new Float32Array( geometry.attributes.position.count * 3 ), 3 );
var position = new THREE.Vector3();
var color = new THREE.Color();
for ( var i = 0; i < index.count; i ++ ) {
var vertexIndex = index.getX( i );
position.fromBufferAttribute( positionAttribute, vertexIndex );
for ( var j = 0; j < colors.length; j ++ ) {
// linear interpolation between aColor and bColor, calculate proportion
// A is previous point (angle)
if ( j === 0 ) {
A.x = 0;
A.y = ( topDown === true ) ? radius : - 1 * radius;
} else {
A.x = coord[ j - 1 ].x;
A.y = coord[ j - 1 ].y;
}
// B is current point (angle)
B = coord[ j ];
if ( B !== undefined ) {
// p has to be between the points A and B which we interpolate
applyColor = ( topDown === true ) ? ( position.y <= A.y && position.y > B.y ) : ( position.y >= A.y && position.y < B.y );
if ( applyColor === true ) {
var aColor = colors[ j ];
var bColor = colors[ j + 1 ];
// below is simple linear interpolation
var t = Math.abs( position.y - A.y ) / ( A.y - B.y );
// to make it faster, you can only calculate this if the y coord changes, the color is the same for points with the same y
color.copy( aColor ).lerp( bColor, t );
colorAttribute.setXYZ( vertexIndex, color.r, color.g, color.b );
} else {
var colorIndex = ( topDown === true ) ? colors.length - 1 : 0;
var c = colors[ colorIndex ];
colorAttribute.setXYZ( vertexIndex, c.r, c.g, c.b );
}
}
}
}
geometry.addAttribute( 'color', colorAttribute );
}
var index = [];
function parseProperty( node, line ) {
var parts = [], part, property = {}, fieldName;
/**
* Expression for matching relevant information, such as a name or value, but not the separators
* @type {RegExp}
*/
var regex = /[^\s,\[\]]+/g;
var point;
while ( null !== ( part = regex.exec( line ) ) ) {
parts.push( part[ 0 ] );
}
fieldName = parts[ 0 ];
// trigger several recorders
switch ( fieldName ) {
case 'skyAngle':
case 'groundAngle':
this.recordingFieldname = fieldName;
this.isRecordingAngles = true;
this.angles = [];
break;
case 'skyColor':
case 'groundColor':
this.recordingFieldname = fieldName;
this.isRecordingColors = true;
this.colors = [];
break;
case 'point':
this.recordingFieldname = fieldName;
this.isRecordingPoints = true;
this.points = [];
break;
case 'coordIndex':
case 'texCoordIndex':
this.recordingFieldname = fieldName;
this.isRecordingFaces = true;
this.indexes = [];
break;
}
if ( this.isRecordingFaces ) {
// the parts hold the indexes as strings
if ( parts.length > 0 ) {
for ( var ind = 0; ind < parts.length; ind ++ ) {
// the part should either be positive integer or -1
if ( ! /(-?\d+)/.test( parts[ ind ] ) ) {
continue;
}
// end of current face
if ( parts[ ind ] === '-1' ) {
if ( index.length > 0 ) {
this.indexes.push( index );
}
// start new one
index = [];
} else {
index.push( parseInt( parts[ ind ] ) );
}
}
}
// end
if ( /]/.exec( line ) ) {
if ( index.length > 0 ) {
this.indexes.push( index );
}
// start new one
index = [];
this.isRecordingFaces = false;
node[ this.recordingFieldname ] = this.indexes;
}
} else if ( this.isRecordingPoints ) {
if ( node.nodeType == 'Coordinate' ) {
while ( null !== ( parts = float3_pattern.exec( line ) ) ) {
point = {
x: parseFloat( parts[ 1 ] ),
y: parseFloat( parts[ 2 ] ),
z: parseFloat( parts[ 3 ] )
};
this.points.push( point );
}
}
if ( node.nodeType == 'TextureCoordinate' ) {
while ( null !== ( parts = float2_pattern.exec( line ) ) ) {
point = {
x: parseFloat( parts[ 1 ] ),
y: parseFloat( parts[ 2 ] )
};
this.points.push( point );
}
}
// end
if ( /]/.exec( line ) ) {
this.isRecordingPoints = false;
node.points = this.points;
}
} else if ( this.isRecordingAngles ) {
// the parts hold the angles as strings
if ( parts.length > 0 ) {
for ( var ind = 0; ind < parts.length; ind ++ ) {
// the part should be a float
if ( ! float_pattern.test( parts[ ind ] ) ) {
continue;
}
this.angles.push( parseFloat( parts[ ind ] ) );
}
}
// end
if ( /]/.exec( line ) ) {
this.isRecordingAngles = false;
node[ this.recordingFieldname ] = this.angles;
}
} else if ( this.isRecordingColors ) {
while ( null !== ( parts = float3_pattern.exec( line ) ) ) {
var color = {
r: parseFloat( parts[ 1 ] ),
g: parseFloat( parts[ 2 ] ),
b: parseFloat( parts[ 3 ] )
};
this.colors.push( color );
}
// end
if ( /]/.exec( line ) ) {
this.isRecordingColors = false;
node[ this.recordingFieldname ] = this.colors;
}
} else if ( parts[ parts.length - 1 ] !== 'NULL' && fieldName !== 'children' ) {
switch ( fieldName ) {
case 'diffuseColor':
case 'emissiveColor':
case 'specularColor':
case 'color':
if ( parts.length !== 4 ) {
console.warn( 'THREE.VRMLLoader: Invalid color format detected for %s.', fieldName );
break;
}
property = {
r: parseFloat( parts[ 1 ] ),
g: parseFloat( parts[ 2 ] ),
b: parseFloat( parts[ 3 ] )
};
break;
case 'location':
case 'direction':
case 'translation':
case 'scale':
case 'size':
if ( parts.length !== 4 ) {
console.warn( 'THREE.VRMLLoader: Invalid vector format detected for %s.', fieldName );
break;
}
property = {
x: parseFloat( parts[ 1 ] ),
y: parseFloat( parts[ 2 ] ),
z: parseFloat( parts[ 3 ] )
};
break;
case 'intensity':
case 'cutOffAngle':
case 'radius':
case 'topRadius':
case 'bottomRadius':
case 'height':
case 'transparency':
case 'shininess':
case 'ambientIntensity':
if ( parts.length !== 2 ) {
console.warn( 'THREE.VRMLLoader: Invalid single float value specification detected for %s.', fieldName );
break;
}
property = parseFloat( parts[ 1 ] );
break;
case 'rotation':
if ( parts.length !== 5 ) {
console.warn( 'THREE.VRMLLoader: Invalid quaternion format detected for %s.', fieldName );
break;
}
property = {
x: parseFloat( parts[ 1 ] ),
y: parseFloat( parts[ 2 ] ),
z: parseFloat( parts[ 3 ] ),
w: parseFloat( parts[ 4 ] )
};
break;
case 'on':
case 'ccw':
case 'solid':
case 'colorPerVertex':
case 'convex':
if ( parts.length !== 2 ) {
console.warn( 'THREE.VRMLLoader: Invalid format detected for %s.', fieldName );
break;
}
property = parts[ 1 ] === 'TRUE' ? true : false;
break;
}
node[ fieldName ] = property;
}
return property;
}
function getTree( lines ) {
var tree = { 'string': 'Scene', children: [] };
var current = tree;
var matches;
var specification;
for ( var i = 0; i < lines.length; i ++ ) {
var comment = '';
var line = lines[ i ];
// omit whitespace only lines
if ( null !== ( /^\s+?$/g.exec( line ) ) ) {
continue;
}
line = line.trim();
// skip empty lines
if ( line === '' ) {
continue;
}
if ( /#/.exec( line ) ) {
var parts = line.split( '#' );
// discard everything after the #, it is a comment
line = parts[ 0 ];
// well, let's also keep the comment
comment = parts[ 1 ];
}
if ( matches = /([^\s]*){1}(?:\s+)?{/.exec( line ) ) {
// first subpattern should match the Node name
var block = { 'nodeType': matches[ 1 ], 'string': line, 'parent': current, 'children': [], 'comment': comment };
current.children.push( block );
current = block;
if ( /}/.exec( line ) ) {
// example: geometry Box { size 1 1 1 } # all on the same line
specification = /{(.*)}/.exec( line )[ 1 ];
// todo: remove once new parsing is complete?
block.children.push( specification );
parseProperty( current, specification );
current = current.parent;
}
} else if ( /}/.exec( line ) ) {
current = current.parent;
} else if ( line !== '' ) {
parseProperty( current, line );
// todo: remove once new parsing is complete? we still do not parse geometry and appearance the new way
current.children.push( line );
}
}
return tree;
}
function parseNode( data, parent ) {
var object;
if ( typeof data === 'string' ) {
if ( /USE/.exec( data ) ) {
var defineKey = /USE\s+?([^\s]+)/.exec( data )[ 1 ];
if ( undefined == defines[ defineKey ] ) {
console.warn( 'THREE.VRMLLoader: %s is not defined.', defineKey );
} else {
if ( /appearance/.exec( data ) && defineKey ) {
parent.material = defines[ defineKey ].clone();
} else if ( /geometry/.exec( data ) && defineKey ) {
parent.geometry = defines[ defineKey ].clone();
// the solid property is not cloned with clone(), is only needed for VRML loading, so we need to transfer it
if ( undefined !== defines[ defineKey ].solid && defines[ defineKey ].solid === false ) {
parent.geometry.solid = false;
parent.material.side = THREE.DoubleSide;
}
} else if ( defineKey ) {
object = defines[ defineKey ].clone();
parent.add( object );
}
}
}
return;
}
object = parent;
if ( data.string.indexOf( 'AmbientLight' ) > - 1 && data.nodeType === 'PointLight' ) {
data.nodeType = 'AmbientLight';
}
var l_visible = data.on !== undefined ? data.on : true;
var l_intensity = data.intensity !== undefined ? data.intensity : 1;
var l_color = new THREE.Color();
if ( data.color ) {
l_color.copy( data.color );
}
if ( data.nodeType === 'AmbientLight' ) {
object = new THREE.AmbientLight( l_color, l_intensity );
object.visible = l_visible;
parent.add( object );
} else if ( data.nodeType === 'PointLight' ) {
var l_distance = 0;
if ( data.radius !== undefined && data.radius < 1000 ) {
l_distance = data.radius;
}
object = new THREE.PointLight( l_color, l_intensity, l_distance );
object.visible = l_visible;
parent.add( object );
} else if ( data.nodeType === 'SpotLight' ) {
var l_intensity = 1;
var l_distance = 0;
var l_angle = Math.PI / 3;
var l_penumbra = 0;
var l_visible = true;
if ( data.radius !== undefined && data.radius < 1000 ) {
l_distance = data.radius;
}
if ( data.cutOffAngle !== undefined ) {
l_angle = data.cutOffAngle;
}
object = new THREE.SpotLight( l_color, l_intensity, l_distance, l_angle, l_penumbra );
object.visible = l_visible;
parent.add( object );
} else if ( data.nodeType === 'Transform' || data.nodeType === 'Group' ) {
object = new THREE.Object3D();
if ( /DEF/.exec( data.string ) ) {
object.name = /DEF\s+([^\s]+)/.exec( data.string )[ 1 ];
defines[ object.name ] = object;
}
if ( data.translation !== undefined ) {
var t = data.translation;
object.position.set( t.x, t.y, t.z );
}
if ( data.rotation !== undefined ) {
var r = data.rotation;
object.quaternion.setFromAxisAngle( new THREE.Vector3( r.x, r.y, r.z ), r.w );
}
if ( data.scale !== undefined ) {
var s = data.scale;
object.scale.set( s.x, s.y, s.z );
}
parent.add( object );
} else if ( data.nodeType === 'Shape' ) {
object = new THREE.Mesh();
if ( /DEF/.exec( data.string ) ) {
object.name = /DEF\s+([^\s]+)/.exec( data.string )[ 1 ];
defines[ object.name ] = object;
}
parent.add( object );
} else if ( data.nodeType === 'Background' ) {
var segments = 20;
// sky (full sphere):
var radius = 2e4;
var skyGeometry = new THREE.SphereBufferGeometry( radius, segments, segments );
var skyMaterial = new THREE.MeshBasicMaterial( { fog: false, side: THREE.BackSide } );
if ( data.skyColor.length > 1 ) {
paintFaces( skyGeometry, radius, data.skyAngle, data.skyColor, true );
skyMaterial.vertexColors = THREE.VertexColors;
} else {
var color = data.skyColor[ 0 ];
skyMaterial.color.setRGB( color.r, color.b, color.g );
}
scene.add( new THREE.Mesh( skyGeometry, skyMaterial ) );
// ground (half sphere):
if ( data.groundColor !== undefined ) {
radius = 1.2e4;
var groundGeometry = new THREE.SphereBufferGeometry( radius, segments, segments, 0, 2 * Math.PI, 0.5 * Math.PI, 1.5 * Math.PI );
var groundMaterial = new THREE.MeshBasicMaterial( { fog: false, side: THREE.BackSide, vertexColors: THREE.VertexColors } );
paintFaces( groundGeometry, radius, data.groundAngle, data.groundColor, false );
scene.add( new THREE.Mesh( groundGeometry, groundMaterial ) );
}
} else if ( /geometry/.exec( data.string ) ) {
if ( data.nodeType === 'Box' ) {
var s = data.size;
parent.geometry = new THREE.BoxBufferGeometry( s.x, s.y, s.z );
} else if ( data.nodeType === 'Cylinder' ) {
parent.geometry = new THREE.CylinderBufferGeometry( data.radius, data.radius, data.height );
} else if ( data.nodeType === 'Cone' ) {
parent.geometry = new THREE.CylinderBufferGeometry( data.topRadius, data.bottomRadius, data.height );
} else if ( data.nodeType === 'Sphere' ) {
parent.geometry = new THREE.SphereBufferGeometry( data.radius );
} else if ( data.nodeType === 'IndexedFaceSet' ) {
var geometry = new THREE.BufferGeometry();
var positions = [];
var uvs = [];
var position, uv;
var i, il, j, jl;
for ( i = 0, il = data.children.length; i < il; i ++ ) {
var child = data.children[ i ];
// uvs
if ( child.nodeType === 'TextureCoordinate' ) {
if ( child.points ) {
for ( j = 0, jl = child.points.length; j < jl; j ++ ) {
uv = child.points[ j ];
uvs.push( uv.x, uv.y );
}
}
}
// positions
if ( child.nodeType === 'Coordinate' ) {
if ( child.points ) {
for ( j = 0, jl = child.points.length; j < jl; j ++ ) {
position = child.points[ j ];
positions.push( position.x, position.y, position.z );
}
}
if ( child.string.indexOf( 'DEF' ) > - 1 ) {
var name = /DEF\s+([^\s]+)/.exec( child.string )[ 1 ];
defines[ name ] = positions.slice( 0 );
}
if ( child.string.indexOf( 'USE' ) > - 1 ) {
var defineKey = /USE\s+([^\s]+)/.exec( child.string )[ 1 ];
positions = defines[ defineKey ];
}
}
}
var skip = 0;
// some shapes only have vertices for use in other shapes
if ( data.coordIndex ) {
var newPositions = [];
var newUvs = [];
position = new THREE.Vector3();
uv = new THREE.Vector2();
for ( i = 0, il = data.coordIndex.length; i < il; i ++ ) {
var indexes = data.coordIndex[ i ];
// VRML support multipoint indexed face sets (more then 3 vertices). You must calculate the composing triangles here
skip = 0;
while ( indexes.length >= 3 && skip < ( indexes.length - 2 ) ) {
if ( data.ccw === undefined ) data.ccw = true; // ccw is true by default
var i1 = indexes[ 0 ];
var i2 = indexes[ skip + ( data.ccw ? 1 : 2 ) ];
var i3 = indexes[ skip + ( data.ccw ? 2 : 1 ) ];
// create non indexed geometry, necessary for face normal generation
position.fromArray( positions, i1 * 3 );
uv.fromArray( uvs, i1 * 2 );
newPositions.push( position.x, position.y, position.z );
newUvs.push( uv.x, uv.y );
position.fromArray( positions, i2 * 3 );
uv.fromArray( uvs, i2 * 2 );
newPositions.push( position.x, position.y, position.z );
newUvs.push( uv.x, uv.y );
position.fromArray( positions, i3 * 3 );
uv.fromArray( uvs, i3 * 2 );
newPositions.push( position.x, position.y, position.z );
newUvs.push( uv.x, uv.y );
skip ++;
}
}
positions = newPositions;
uvs = newUvs;
} else {
// do not add dummy mesh to the scene
parent.parent.remove( parent );
}
if ( false === data.solid ) {
parent.material.side = THREE.DoubleSide;
}
// we need to store it on the geometry for use with defines
geometry.solid = data.solid;
geometry.addAttribute( 'position', new THREE.Float32BufferAttribute( positions, 3 ) );
if ( uvs.length > 0 ) {
geometry.addAttribute( 'uv', new THREE.Float32BufferAttribute( uvs, 2 ) );
}
geometry.computeVertexNormals();
geometry.computeBoundingSphere();
// see if it's a define
if ( /DEF/.exec( data.string ) ) {
geometry.name = /DEF ([^\s]+)/.exec( data.string )[ 1 ];
defines[ geometry.name ] = geometry;
}
parent.geometry = geometry;
}
return;
} else if ( /appearance/.exec( data.string ) ) {
for ( var i = 0; i < data.children.length; i ++ ) {
var child = data.children[ i ];
if ( child.nodeType === 'Material' ) {
var material = new THREE.MeshPhongMaterial();
if ( child.diffuseColor !== undefined ) {
var d = child.diffuseColor;
material.color.setRGB( d.r, d.g, d.b );
}
if ( child.emissiveColor !== undefined ) {
var e = child.emissiveColor;
material.emissive.setRGB( e.r, e.g, e.b );
}
if ( child.specularColor !== undefined ) {
var s = child.specularColor;
material.specular.setRGB( s.r, s.g, s.b );
}
if ( child.transparency !== undefined ) {
var t = child.transparency;
// transparency is opposite of opacity
material.opacity = Math.abs( 1 - t );
material.transparent = true;
}
if ( /DEF/.exec( data.string ) ) {
material.name = /DEF ([^\s]+)/.exec( data.string )[ 1 ];
defines[ material.name ] = material;
}
parent.material = material;
}
if ( child.nodeType === 'ImageTexture' ) {
var textureName = /"([^"]+)"/.exec( child.children[ 0 ] );
if ( textureName ) {
parent.material.name = textureName[ 1 ];
parent.material.map = textureLoader.load( texturePath + textureName[ 1 ] );
}
}
}
return;
}
for ( var i = 0, l = data.children.length; i < l; i ++ ) {
parseNode( data.children[ i ], object );
}
}
parseNode( getTree( lines ), scene );
}
var scene = new THREE.Scene();
var lines = data.split( '\n' );
// some lines do not have breaks
for ( var i = lines.length - 1; i > - 1; i -- ) {
var line = lines[ i ];
// split lines with {..{ or {..[ - some have both
if ( /{.*[{\[]/.test( line ) ) {
var parts = line.split( '{' ).join( '{\n' ).split( '\n' );
parts.unshift( 1 );
parts.unshift( i );
lines.splice.apply( lines, parts );
} else if ( /\].*}/.test( line ) ) {
// split lines with ]..}
var parts = line.split( ']' ).join( ']\n' ).split( '\n' );
parts.unshift( 1 );
parts.unshift( i );
lines.splice.apply( lines, parts );
}
if ( /}.*}/.test( line ) ) {
// split lines with }..}
var parts = line.split( '}' ).join( '}\n' ).split( '\n' );
parts.unshift( 1 );
parts.unshift( i );
lines.splice.apply( lines, parts );
}
if ( /^\b[^\s]+\b$/.test( line.trim() ) ) {
// prevent lines with single words like "coord" or "geometry", see #12209
lines[ i + 1 ] = line + ' ' + lines[ i + 1 ].trim();
lines.splice( i, 1 );
} else if ( ( line.indexOf( 'coord' ) > - 1 ) && ( line.indexOf( '[' ) < 0 ) && ( line.indexOf( '{' ) < 0 ) ) {
// force the parser to create Coordinate node for empty coords
// coord USE something -> coord USE something Coordinate {}
lines[ i ] += ' Coordinate {}';
}
}
var header = lines.shift();
if ( /V1.0/.exec( header ) ) {
console.warn( 'THREE.VRMLLoader: V1.0 not supported yet.' );
} else if ( /V2.0/.exec( header ) ) {
parseV2( lines, scene );
}
return scene;
}
};