/**
* Loader for UTF8 version2 (after r51) encoded models generated by:
* http://code.google.com/p/webgl-loader/
*
* Code to load/decompress mesh is taken from r100 of this webgl-loader
*/
THREE.UTF8Loader = function () {};
/**
* Load UTF8 encoded model
* @param jsonUrl - URL from which to load json containing information about model
* @param callback - Callback(THREE.Object3D) on successful loading of model
* @param options - options on how to load model (see THREE.MTLLoader.MaterialCreator for basic options)
* Additional options include
* geometryBase: Base url from which to load referenced geometries
* materialBase: Base url from which to load referenced textures
*/
THREE.UTF8Loader.prototype.load = function ( jsonUrl, callback, options ) {
this.downloadModelJson( jsonUrl, callback, options );
};
// BufferGeometryCreator
THREE.UTF8Loader.BufferGeometryCreator = function () {
};
THREE.UTF8Loader.BufferGeometryCreator.prototype.create = function ( attribArray, indices ) {
var ntris = indices.length / 3;
var geometry = new THREE.BufferGeometry();
var positions = new Float32Array( ntris * 3 * 3 );
var normals = new Float32Array( ntris * 3 * 3 );
var uvs = new Float32Array( ntris * 3 * 2 );
var i, j, offset;
var end = attribArray.length;
var stride = 8;
// extract positions
j = 0;
offset = 0;
for ( i = offset; i < end; i += stride ) {
positions[ j ++ ] = attribArray[ i ];
positions[ j ++ ] = attribArray[ i + 1 ];
positions[ j ++ ] = attribArray[ i + 2 ];
}
// extract uvs
j = 0;
offset = 3;
for ( i = offset; i < end; i += stride ) {
uvs[ j ++ ] = attribArray[ i ];
uvs[ j ++ ] = attribArray[ i + 1 ];
}
// extract normals
j = 0;
offset = 5;
for ( i = offset; i < end; i += stride ) {
normals[ j ++ ] = attribArray[ i ];
normals[ j ++ ] = attribArray[ i + 1 ];
normals[ j ++ ] = attribArray[ i + 2 ];
}
geometry.setIndex( new THREE.BufferAttribute( indices, 1 ) );
geometry.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) );
geometry.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );
geometry.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) );
geometry.computeBoundingSphere();
return geometry;
};
// UTF-8 decoder from webgl-loader (r100)
// http://code.google.com/p/webgl-loader/
// Model manifest description. Contains objects like:
// name: {
// materials: { 'material_name': { ... } ... },
// decodeParams: {
// decodeOffsets: [ ... ],
// decodeScales: [ ... ],
// },
// urls: {
// 'url': [
// { material: 'material_name',
// attribRange: [#, #],
// indexRange: [#, #],
// names: [ 'object names' ... ],
// lengths: [#, #, # ... ]
// }
// ],
// ...
// }
// }
var DEFAULT_DECODE_PARAMS = {
decodeOffsets: [ - 4095, - 4095, - 4095, 0, 0, - 511, - 511, - 511 ],
decodeScales: [ 1 / 8191, 1 / 8191, 1 / 8191, 1 / 1023, 1 / 1023, 1 / 1023, 1 / 1023, 1 / 1023 ]
// TODO: normal decoding? (see walt.js)
// needs to know: input, output (from vertex format!)
//
// Should split attrib/index.
// 1) Decode position and non-normal attributes.
// 2) Decode indices, computing normals
// 3) Maybe normalize normals? Only necessary for refinement, or fixed?
// 4) Maybe refine normals? Should this be part of regular refinement?
// 5) Morphing
};
// Triangle strips!
// TODO: will it be an optimization to specialize this method at
// runtime for different combinations of stride, decodeOffset and
// decodeScale?
THREE.UTF8Loader.prototype.decompressAttribsInner_ = function ( str, inputStart, inputEnd,
output, outputStart, stride, decodeOffset, decodeScale ) {
var prev = 0;
for ( var j = inputStart; j < inputEnd; j ++ ) {
var code = str.charCodeAt( j );
prev += ( code >> 1 ) ^ ( - ( code & 1 ) );
output[ outputStart ] = decodeScale * ( prev + decodeOffset );
outputStart += stride;
}
};
THREE.UTF8Loader.prototype.decompressIndices_ = function ( str, inputStart, numIndices, output, outputStart ) {
var highest = 0;
for ( var i = 0; i < numIndices; i ++ ) {
var code = str.charCodeAt( inputStart ++ );
output[ outputStart ++ ] = highest - code;
if ( code === 0 ) {
highest ++;
}
}
};
THREE.UTF8Loader.prototype.decompressAABBs_ = function ( str, inputStart, numBBoxen, decodeOffsets, decodeScales ) {
var numFloats = 6 * numBBoxen;
var inputEnd = inputStart + numFloats;
var outputStart = 0;
var bboxen = new Float32Array( numFloats );
for ( var i = inputStart; i < inputEnd; i += 6 ) {
var minX = str.charCodeAt( i + 0 ) + decodeOffsets[ 0 ];
var minY = str.charCodeAt( i + 1 ) + decodeOffsets[ 1 ];
var minZ = str.charCodeAt( i + 2 ) + decodeOffsets[ 2 ];
var radiusX = ( str.charCodeAt( i + 3 ) + 1 ) >> 1;
var radiusY = ( str.charCodeAt( i + 4 ) + 1 ) >> 1;
var radiusZ = ( str.charCodeAt( i + 5 ) + 1 ) >> 1;
bboxen[ outputStart ++ ] = decodeScales[ 0 ] * ( minX + radiusX );
bboxen[ outputStart ++ ] = decodeScales[ 1 ] * ( minY + radiusY );
bboxen[ outputStart ++ ] = decodeScales[ 2 ] * ( minZ + radiusZ );
bboxen[ outputStart ++ ] = decodeScales[ 0 ] * radiusX;
bboxen[ outputStart ++ ] = decodeScales[ 1 ] * radiusY;
bboxen[ outputStart ++ ] = decodeScales[ 2 ] * radiusZ;
}
return bboxen;
};
THREE.UTF8Loader.prototype.decompressMesh = function ( str, meshParams, decodeParams, name, idx, callback ) {
// Extract conversion parameters from attribArrays.
var stride = decodeParams.decodeScales.length;
var decodeOffsets = decodeParams.decodeOffsets;
var decodeScales = decodeParams.decodeScales;
var attribStart = meshParams.attribRange[ 0 ];
var numVerts = meshParams.attribRange[ 1 ];
// Decode attributes.
var inputOffset = attribStart;
var attribsOut = new Float32Array( stride * numVerts );
for ( var j = 0; j < stride; j ++ ) {
var end = inputOffset + numVerts;
var decodeScale = decodeScales[ j ];
if ( decodeScale ) {
// Assume if decodeScale is never set, simply ignore the
// attribute.
this.decompressAttribsInner_( str, inputOffset, end, attribsOut, j, stride, decodeOffsets[ j ], decodeScale );
}
inputOffset = end;
}
var numIndices = 3 * meshParams.indexRange[ 1 ];
var indicesOut = new Uint16Array( numIndices );
this.decompressIndices_( str, inputOffset, numIndices, indicesOut, 0 );
// Decode bboxen.
var bboxen = undefined;
var bboxOffset = meshParams.bboxes;
if ( bboxOffset ) {
bboxen = this.decompressAABBs_( str, bboxOffset, meshParams.names.length, decodeOffsets, decodeScales );
}
callback( name, idx, attribsOut, indicesOut, bboxen, meshParams );
};
THREE.UTF8Loader.prototype.copyAttrib = function ( stride, attribsOutFixed, lastAttrib, index ) {
for ( var j = 0; j < stride; j ++ ) {
lastAttrib[ j ] = attribsOutFixed[ stride * index + j ];
}
};
THREE.UTF8Loader.prototype.decodeAttrib2 = function ( str, stride, decodeOffsets, decodeScales, deltaStart,
numVerts, attribsOut, attribsOutFixed, lastAttrib, index ) {
for ( var j = 0; j < 5; j ++ ) {
var code = str.charCodeAt( deltaStart + numVerts * j + index );
var delta = ( code >> 1 ) ^ ( - ( code & 1 ) );
lastAttrib[ j ] += delta;
attribsOutFixed[ stride * index + j ] = lastAttrib[ j ];
attribsOut[ stride * index + j ] = decodeScales[ j ] * ( lastAttrib[ j ] + decodeOffsets[ j ] );
}
};
THREE.UTF8Loader.prototype.accumulateNormal = function ( i0, i1, i2, attribsOutFixed, crosses ) {
var p0x = attribsOutFixed[ 8 * i0 ];
var p0y = attribsOutFixed[ 8 * i0 + 1 ];
var p0z = attribsOutFixed[ 8 * i0 + 2 ];
var p1x = attribsOutFixed[ 8 * i1 ];
var p1y = attribsOutFixed[ 8 * i1 + 1 ];
var p1z = attribsOutFixed[ 8 * i1 + 2 ];
var p2x = attribsOutFixed[ 8 * i2 ];
var p2y = attribsOutFixed[ 8 * i2 + 1 ];
var p2z = attribsOutFixed[ 8 * i2 + 2 ];
p1x -= p0x;
p1y -= p0y;
p1z -= p0z;
p2x -= p0x;
p2y -= p0y;
p2z -= p0z;
p0x = p1y * p2z - p1z * p2y;
p0y = p1z * p2x - p1x * p2z;
p0z = p1x * p2y - p1y * p2x;
crosses[ 3 * i0 ] += p0x;
crosses[ 3 * i0 + 1 ] += p0y;
crosses[ 3 * i0 + 2 ] += p0z;
crosses[ 3 * i1 ] += p0x;
crosses[ 3 * i1 + 1 ] += p0y;
crosses[ 3 * i1 + 2 ] += p0z;
crosses[ 3 * i2 ] += p0x;
crosses[ 3 * i2 + 1 ] += p0y;
crosses[ 3 * i2 + 2 ] += p0z;
};
THREE.UTF8Loader.prototype.decompressMesh2 = function ( str, meshParams, decodeParams, name, idx, callback ) {
var MAX_BACKREF = 96;
// Extract conversion parameters from attribArrays.
var stride = decodeParams.decodeScales.length;
var decodeOffsets = decodeParams.decodeOffsets;
var decodeScales = decodeParams.decodeScales;
var deltaStart = meshParams.attribRange[ 0 ];
var numVerts = meshParams.attribRange[ 1 ];
var codeStart = meshParams.codeRange[ 0 ];
var numIndices = 3 * meshParams.codeRange[ 2 ];
var indicesOut = new Uint16Array( numIndices );
var crosses = new Int32Array( 3 * numVerts );
var lastAttrib = new Uint16Array( stride );
var attribsOutFixed = new Uint16Array( stride * numVerts );
var attribsOut = new Float32Array( stride * numVerts );
var highest = 0;
var outputStart = 0;
for ( var i = 0; i < numIndices; i += 3 ) {
var code = str.charCodeAt( codeStart ++ );
var max_backref = Math.min( i, MAX_BACKREF );
if ( code < max_backref ) {
// Parallelogram
var winding = code % 3;
var backref = i - ( code - winding );
var i0, i1, i2;
switch ( winding ) {
case 0:
i0 = indicesOut[ backref + 2 ];
i1 = indicesOut[ backref + 1 ];
i2 = indicesOut[ backref + 0 ];
break;
case 1:
i0 = indicesOut[ backref + 0 ];
i1 = indicesOut[ backref + 2 ];
i2 = indicesOut[ backref + 1 ];
break;
case 2:
i0 = indicesOut[ backref + 1 ];
i1 = indicesOut[ backref + 0 ];
i2 = indicesOut[ backref + 2 ];
break;
}
indicesOut[ outputStart ++ ] = i0;
indicesOut[ outputStart ++ ] = i1;
code = str.charCodeAt( codeStart ++ );
var index = highest - code;
indicesOut[ outputStart ++ ] = index;
if ( code === 0 ) {
for ( var j = 0; j < 5; j ++ ) {
var deltaCode = str.charCodeAt( deltaStart + numVerts * j + highest );
var prediction = ( ( deltaCode >> 1 ) ^ ( - ( deltaCode & 1 ) ) ) +
attribsOutFixed[ stride * i0 + j ] +
attribsOutFixed[ stride * i1 + j ] -
attribsOutFixed[ stride * i2 + j ];
lastAttrib[ j ] = prediction;
attribsOutFixed[ stride * highest + j ] = prediction;
attribsOut[ stride * highest + j ] = decodeScales[ j ] * ( prediction + decodeOffsets[ j ] );
}
highest ++;
} else {
this.copyAttrib( stride, attribsOutFixed, lastAttrib, index );
}
this.accumulateNormal( i0, i1, index, attribsOutFixed, crosses );
} else {
// Simple
var index0 = highest - ( code - max_backref );
indicesOut[ outputStart ++ ] = index0;
if ( code === max_backref ) {
this.decodeAttrib2( str, stride, decodeOffsets, decodeScales, deltaStart,
numVerts, attribsOut, attribsOutFixed, lastAttrib, highest ++ );
} else {
this.copyAttrib( stride, attribsOutFixed, lastAttrib, index0 );
}
code = str.charCodeAt( codeStart ++ );
var index1 = highest - code;
indicesOut[ outputStart ++ ] = index1;
if ( code === 0 ) {
this.decodeAttrib2( str, stride, decodeOffsets, decodeScales, deltaStart,
numVerts, attribsOut, attribsOutFixed, lastAttrib, highest ++ );
} else {
this.copyAttrib( stride, attribsOutFixed, lastAttrib, index1 );
}
code = str.charCodeAt( codeStart ++ );
var index2 = highest - code;
indicesOut[ outputStart ++ ] = index2;
if ( code === 0 ) {
for ( var j = 0; j < 5; j ++ ) {
lastAttrib[ j ] = ( attribsOutFixed[ stride * index0 + j ] + attribsOutFixed[ stride * index1 + j ] ) / 2;
}
this.decodeAttrib2( str, stride, decodeOffsets, decodeScales, deltaStart,
numVerts, attribsOut, attribsOutFixed, lastAttrib, highest ++ );
} else {
this.copyAttrib( stride, attribsOutFixed, lastAttrib, index2 );
}
this.accumulateNormal( index0, index1, index2, attribsOutFixed, crosses );
}
}
for ( var i = 0; i < numVerts; i ++ ) {
var nx = crosses[ 3 * i ];
var ny = crosses[ 3 * i + 1 ];
var nz = crosses[ 3 * i + 2 ];
var norm = 511.0 / Math.sqrt( nx * nx + ny * ny + nz * nz );
var cx = str.charCodeAt( deltaStart + 5 * numVerts + i );
var cy = str.charCodeAt( deltaStart + 6 * numVerts + i );
var cz = str.charCodeAt( deltaStart + 7 * numVerts + i );
attribsOut[ stride * i + 5 ] = norm * nx + ( ( cx >> 1 ) ^ ( - ( cx & 1 ) ) );
attribsOut[ stride * i + 6 ] = norm * ny + ( ( cy >> 1 ) ^ ( - ( cy & 1 ) ) );
attribsOut[ stride * i + 7 ] = norm * nz + ( ( cz >> 1 ) ^ ( - ( cz & 1 ) ) );
}
callback( name, idx, attribsOut, indicesOut, undefined, meshParams );
};
THREE.UTF8Loader.prototype.downloadMesh = function ( path, name, meshEntry, decodeParams, callback ) {
var loader = this;
var idx = 0;
function onprogress( data ) {
while ( idx < meshEntry.length ) {
var meshParams = meshEntry[ idx ];
var indexRange = meshParams.indexRange;
if ( indexRange ) {
var meshEnd = indexRange[ 0 ] + 3 * indexRange[ 1 ];
if ( data.length < meshEnd ) break;
loader.decompressMesh( data, meshParams, decodeParams, name, idx, callback );
} else {
var codeRange = meshParams.codeRange;
var meshEnd = codeRange[ 0 ] + codeRange[ 1 ];
if ( data.length < meshEnd ) break;
loader.decompressMesh2( data, meshParams, decodeParams, name, idx, callback );
}
++ idx;
}
}
getHttpRequest( path, function ( data ) {
onprogress( data );
// TODO: handle errors.
} );
};
THREE.UTF8Loader.prototype.downloadMeshes = function ( path, meshUrlMap, decodeParams, callback ) {
for ( var url in meshUrlMap ) {
var meshEntry = meshUrlMap[ url ];
this.downloadMesh( path + url, url, meshEntry, decodeParams, callback );
}
};
THREE.UTF8Loader.prototype.createMeshCallback = function ( materialBaseUrl, loadModelInfo, allDoneCallback ) {
var nCompletedUrls = 0;
var nExpectedUrls = 0;
var expectedMeshesPerUrl = {};
var decodedMeshesPerUrl = {};
var modelParts = {};
var meshUrlMap = loadModelInfo.urls;
for ( var url in meshUrlMap ) {
expectedMeshesPerUrl[ url ] = meshUrlMap[ url ].length;
decodedMeshesPerUrl[ url ] = 0;
nExpectedUrls ++;
modelParts[ url ] = new THREE.Object3D();
}
var model = new THREE.Object3D();
// Prepare materials first...
var materialCreator = new THREE.MTLLoader.MaterialCreator( materialBaseUrl, loadModelInfo.options );
materialCreator.setMaterials( loadModelInfo.materials );
materialCreator.preload();
// Create callback for creating mesh parts
var bufferGeometryCreator = new THREE.UTF8Loader.BufferGeometryCreator();
var meshCallback = function ( name, idx, attribArray, indexArray, bboxen, meshParams ) {
// Got ourselves a new mesh
// name identifies this part of the model (url)
// idx is the mesh index of this mesh of the part
// attribArray defines the vertices
// indexArray defines the faces
// bboxen defines the bounding box
// meshParams contains the material info
var geometry = bufferGeometryCreator.create( attribArray, indexArray );
var material = materialCreator.create( meshParams.material );
var mesh = new THREE.Mesh( geometry, material );
modelParts[ name ].add( mesh );
//model.add(new THREE.Mesh(geometry, material));
decodedMeshesPerUrl[ name ] ++;
if ( decodedMeshesPerUrl[ name ] === expectedMeshesPerUrl[ name ] ) {
nCompletedUrls ++;
model.add( modelParts[ name ] );
if ( nCompletedUrls === nExpectedUrls ) {
// ALL DONE!!!
allDoneCallback( model );
}
}
};
return meshCallback;
};
THREE.UTF8Loader.prototype.downloadModel = function ( geometryBase, materialBase, model, callback ) {
var meshCallback = this.createMeshCallback( materialBase, model, callback );
this.downloadMeshes( geometryBase, model.urls, model.decodeParams, meshCallback );
};
THREE.UTF8Loader.prototype.downloadModelJson = function ( jsonUrl, callback, options ) {
getJsonRequest( jsonUrl, function ( loaded ) {
if ( ! loaded.decodeParams ) {
if ( options && options.decodeParams ) {
loaded.decodeParams = options.decodeParams;
} else {
loaded.decodeParams = DEFAULT_DECODE_PARAMS;
}
}
loaded.options = options;
var geometryBase = jsonUrl.substr( 0, jsonUrl.lastIndexOf( "/" ) + 1 );
var materialBase = geometryBase;
if ( options && options.geometryBase ) {
geometryBase = options.geometryBase;
if ( geometryBase.charAt( geometryBase.length - 1 ) !== "/" ) {
geometryBase = geometryBase + "/";
}
}
if ( options && options.materialBase ) {
materialBase = options.materialBase;
if ( materialBase.charAt( materialBase.length - 1 ) !== "/" ) {
materialBase = materialBase + "/";
}
}
this.downloadModel( geometryBase, materialBase, loaded, callback );
}.bind( this ) );
};
// XMLHttpRequest stuff
function getHttpRequest( url, onload, opt_onprogress ) {
var req = new THREE.FileLoader();
req.load( url, onload, opt_onprogress );
}
function getJsonRequest( url, onjson ) {
getHttpRequest( url, function ( e ) {
onjson( JSON.parse( e ) );
},
function () {} );
}
function addListeners( dom, listeners ) {
// TODO: handle event capture, object binding.
for ( var key in listeners ) {
dom.addEventListener( key, listeners[ key ] );
}
}