[b86468]: / v3 / py2tfjs / meshnet.py

Download this file

184 lines (171 with data), 4.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import torch.nn as nn
import torch.nn.functional as F
MeshNet_38_or_64_kwargs = [
{
"in_channels": -1,
"kernel_size": 3,
"out_channels": 21,
"padding": 1,
"stride": 1,
"dilation": 1,
},
{
"in_channels": 21,
"kernel_size": 3,
"out_channels": 21,
"padding": 1,
"stride": 1,
"dilation": 1,
},
{
"in_channels": 21,
"kernel_size": 3,
"out_channels": 21,
"padding": 1,
"stride": 1,
"dilation": 1,
},
{
"in_channels": 21,
"kernel_size": 3,
"out_channels": 21,
"padding": 2,
"stride": 1,
"dilation": 2,
},
{
"in_channels": 21,
"kernel_size": 3,
"out_channels": 21,
"padding": 4,
"stride": 1,
"dilation": 4,
},
{
"in_channels": 21,
"kernel_size": 3,
"out_channels": 21,
"padding": 8,
"stride": 1,
"dilation": 8,
},
{
"in_channels": 21,
"kernel_size": 3,
"out_channels": 21,
"padding": 1,
"stride": 1,
"dilation": 1,
},
{
"in_channels": 21,
"kernel_size": 1,
"out_channels": -1,
"padding": 0,
"stride": 1,
"dilation": 1,
},
]
MeshNet_68_kwargs = [
{
"in_channels": -1,
"kernel_size": 3,
"out_channels": 71,
"padding": 1,
"stride": 1,
"dilation": 1,
},
{
"in_channels": 71,
"kernel_size": 3,
"out_channels": 71,
"padding": 1,
"stride": 1,
"dilation": 1,
},
{
"in_channels": 71,
"kernel_size": 3,
"out_channels": 71,
"padding": 2,
"stride": 1,
"dilation": 2,
},
{
"in_channels": 71,
"kernel_size": 3,
"out_channels": 71,
"padding": 4,
"stride": 1,
"dilation": 4,
},
{
"in_channels": 71,
"kernel_size": 3,
"out_channels": 71,
"padding": 8,
"stride": 1,
"dilation": 8,
},
{
"in_channels": 71,
"kernel_size": 3,
"out_channels": 71,
"padding": 16,
"stride": 1,
"dilation": 16,
},
{
"in_channels": 71,
"kernel_size": 3,
"out_channels": 71,
"padding": 1,
"stride": 1,
"dilation": 1,
},
{
"in_channels": 71,
"kernel_size": 1,
"out_channels": -1,
"padding": 0,
"stride": 1,
"dilation": 1,
},
]
def conv_w_bn_before_act(dropout_p=0, *args, **kwargs):
"""Configurable Conv block with Batchnorm and Dropout"""
return nn.Sequential(
nn.Conv3d(*args, **kwargs),
nn.BatchNorm3d(kwargs["out_channels"]),
nn.ReLU(inplace=True),
nn.Dropout3d(dropout_p),
)
def init_weights(model):
"""Set weights to be xavier normal for all Convs"""
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.Conv3d, nn.ConvTranspose2d, nn.ConvTranspose3d)):
nn.init.xavier_normal_(m.weight, gain=nn.init.calculate_gain("relu"))
nn.init.constant_(m.bias, 0.0)
class MeshNet(nn.Module):
"""Configurable MeshNet from https://arxiv.org/pdf/1612.00940.pdf"""
def __init__(self, n_channels, n_classes, large=True, dropout_p=0):
"""Init"""
if large:
params = MeshNet_68_kwargs
else:
params = MeshNet_38_or_64_kwargs
super(MeshNet, self).__init__()
params[0]["in_channels"] = n_channels
params[-1]["out_channels"] = n_classes
layers = [
conv_w_bn_before_act(dropout_p=dropout_p, **block_kwargs)
for block_kwargs in params[:-1]
]
layers.append(nn.Conv3d(**params[-1]))
self.model = nn.Sequential(*layers)
init_weights(self.model,)
def forward(self, x):
"""Forward pass"""
x = self.model(x)
return x