a b/v3/py2tfjs/conversion_example/modelAE.json
1
{
2
  "header": "Autoencoder-like architecture for 256^3 brains",
3
  "bnorm": true,
4
  "gelu": true,
5
  "dropout_p": 0,
6
  "layers": [
7
    {
8
      "in_channels": -1,
9
      "out_channels":  5,
10
      "kernel_size": 3,
11
      "padding": 1,
12
      "stride": 1,
13
      "dilation": 1
14
    },
15
    {
16
      "in_channels": 5,
17
      "out_channels": 5,
18
      "kernel_size": 3,
19
      "padding": 2,
20
      "stride": 1,
21
      "dilation": 2
22
    },
23
    {
24
      "in_channels": 5,
25
      "out_channels": 5,
26
      "kernel_size": 3,
27
      "padding": 3,
28
      "stride": 1,
29
      "dilation": 3
30
    },
31
    {
32
      "in_channels": 5,
33
      "out_channels": 5,
34
      "kernel_size": 3,
35
      "padding": 4,
36
      "stride": 1,
37
      "dilation": 4
38
    },
39
    {
40
      "in_channels": 5,
41
      "out_channels": 5,
42
      "kernel_size": 3,
43
      "padding": 5,
44
      "stride": 1,
45
      "dilation": 5
46
    },
47
    {
48
      "in_channels": 5,
49
      "out_channels": 5,
50
      "kernel_size": 3,
51
      "padding": 6,
52
      "stride": 1,
53
      "dilation": 6
54
    },
55
    {
56
      "in_channels": 5,
57
      "out_channels": 5,
58
      "kernel_size": 3,
59
      "padding": 7,
60
      "stride": 1,
61
      "dilation": 7
62
    },
63
    {
64
      "in_channels": 5,
65
      "out_channels": 5,
66
      "kernel_size": 3,
67
      "padding": 8,
68
      "stride": 1,
69
      "dilation": 8
70
    },
71
    {
72
      "in_channels": 5,
73
      "out_channels": 5,
74
      "kernel_size": 3,
75
      "padding": 12,
76
      "stride": 1,
77
      "dilation": 12
78
    },
79
    {
80
      "in_channels": 5,
81
      "out_channels": 5,
82
      "kernel_size": 3,
83
      "padding": 16,
84
      "stride": 1,
85
      "dilation": 16
86
    },
87
    {
88
      "in_channels": 5,
89
      "out_channels": 5,
90
      "kernel_size": 3,
91
      "padding": 12,
92
      "stride": 1,
93
      "dilation": 12
94
    },
95
    {
96
      "in_channels": 5,
97
      "out_channels": 5,
98
      "kernel_size": 3,
99
      "padding": 8,
100
      "stride": 1,
101
      "dilation": 8
102
    }, 
103
    {
104
      "in_channels": 5,
105
      "out_channels": 5,
106
      "kernel_size": 3,
107
      "padding": 7,
108
      "stride": 1,
109
      "dilation": 7
110
    },
111
    {
112
      "in_channels": 5,
113
      "out_channels": 5,
114
      "kernel_size": 3,
115
      "padding": 6,
116
      "stride": 1,
117
      "dilation": 6
118
    },
119
    {
120
      "in_channels": 5,
121
      "out_channels": 5,
122
      "kernel_size": 3,
123
      "padding": 5,
124
      "stride": 1,
125
      "dilation": 5
126
    },
127
    {
128
      "in_channels": 5,
129
      "out_channels": 5,
130
      "kernel_size": 3,
131
      "padding": 4,
132
      "stride": 1,
133
      "dilation": 4
134
    },
135
    {
136
      "in_channels": 5,
137
      "out_channels": 5,
138
      "kernel_size": 3,
139
      "padding": 3,
140
      "stride": 1,
141
      "dilation": 3
142
    },
143
    {
144
      "in_channels": 5,
145
      "out_channels": 5,
146
      "kernel_size": 3,
147
      "padding": 2,
148
      "stride": 1,
149
      "dilation": 2
150
    },
151
    {
152
      "in_channels": 5,
153
      "out_channels": 5,
154
      "kernel_size": 3,
155
      "padding": 1,
156
      "stride": 1,
157
      "dilation": 1
158
    },
159
    {
160
      "in_channels": 5,
161
      "out_channels": -1,
162
      "kernel_size": 1,
163
      "padding": 0,
164
      "stride": 1,
165
      "dilation": 1
166
    }
167
  ]
168
}