|
a |
|
b/brainchop-webworker.js |
|
|
1 |
import * as tf from '@tensorflow/tfjs' |
|
|
2 |
import { inferenceModelsList } from './brainchop-parameters.js' |
|
|
3 |
import { |
|
|
4 |
addZeroPaddingTo3dTensor, |
|
|
5 |
applyMriThreshold, |
|
|
6 |
binarizeVolumeDataTensor, |
|
|
7 |
convByOutputChannelAndInputSlicing, |
|
|
8 |
draw3dObjBoundingVolume, |
|
|
9 |
firstLastNonZero3D, |
|
|
10 |
generateBrainMask, |
|
|
11 |
generateOutputSlicesV2, |
|
|
12 |
getAllSlicesDataAsTF3D, |
|
|
13 |
getModelNumLayers, |
|
|
14 |
getModelNumParameters, |
|
|
15 |
isModelChnlLast, |
|
|
16 |
load_model, |
|
|
17 |
minMaxNormalizeVolumeData, |
|
|
18 |
quantileNormalizeVolumeData, |
|
|
19 |
removeZeroPaddingFrom3dTensor, |
|
|
20 |
resizeWithZeroPadding, |
|
|
21 |
SequentialConvLayer |
|
|
22 |
} from './tensor-utils.js' |
|
|
23 |
|
|
|
24 |
function callbackUI(message = '', progressFrac = -1, modalMessage = '', statData = []) { |
|
|
25 |
let statStr = [] |
|
|
26 |
if (Object.keys(statData).length > 0) { |
|
|
27 |
function arrayToStr() { |
|
|
28 |
const list = {} |
|
|
29 |
for (const key in statData) { |
|
|
30 |
list[key] = statData[key] |
|
|
31 |
} |
|
|
32 |
return JSON.stringify(list) |
|
|
33 |
} |
|
|
34 |
statStr = arrayToStr(statData) |
|
|
35 |
} |
|
|
36 |
self.postMessage({ |
|
|
37 |
cmd: 'ui', |
|
|
38 |
message, |
|
|
39 |
progressFrac, |
|
|
40 |
modalMessage, |
|
|
41 |
statData: statStr |
|
|
42 |
}) |
|
|
43 |
} |
|
|
44 |
|
|
|
45 |
function callbackImg(img, opts, modelEntry) { |
|
|
46 |
self.postMessage({ cmd: 'img', img, opts, modelEntry }) |
|
|
47 |
} |
|
|
48 |
|
|
|
49 |
async function inferenceFullVolumeSeqCovLayerPhase2( |
|
|
50 |
opts, |
|
|
51 |
modelEntry, |
|
|
52 |
model, |
|
|
53 |
slices_3d, |
|
|
54 |
num_of_slices, |
|
|
55 |
slice_height, |
|
|
56 |
slice_width, |
|
|
57 |
pipeline1_out, |
|
|
58 |
statData, |
|
|
59 |
niftiImage |
|
|
60 |
) { |
|
|
61 |
// --Phase-2, After remove the skull try to allocate brain volume and make inferece |
|
|
62 |
|
|
|
63 |
console.log(' ---- Start FullVolume Inference with Sequential Conv Layer for phase-II ---- ') |
|
|
64 |
const quantileNorm = modelEntry.enableQuantileNorm |
|
|
65 |
if (quantileNorm) { |
|
|
66 |
// Quantile normalize function needs specific models to be used |
|
|
67 |
console.log('preModel Quantile normalization enabled') |
|
|
68 |
slices_3d = await quantileNormalizeVolumeData(slices_3d) |
|
|
69 |
} else { |
|
|
70 |
// Min Max Nomalize MRI data to be from 0 to 1 |
|
|
71 |
console.log('preModel Min Max normalization enabled') |
|
|
72 |
slices_3d = await minMaxNormalizeVolumeData(slices_3d) |
|
|
73 |
} |
|
|
74 |
|
|
|
75 |
let mask_3d |
|
|
76 |
|
|
|
77 |
if (pipeline1_out == null) { |
|
|
78 |
// preModel is null |
|
|
79 |
|
|
|
80 |
// Check if thresholding the MRI to remove noisy voxels for better cropping is needed. |
|
|
81 |
const autoThresholdValue = modelEntry.autoThreshold |
|
|
82 |
|
|
|
83 |
if (autoThresholdValue > 0 && autoThresholdValue <= 1) { |
|
|
84 |
// Filtered MRI from noisy voxel below autoThresholdValue |
|
|
85 |
mask_3d = await applyMriThreshold(slices_3d, autoThresholdValue) |
|
|
86 |
} else { |
|
|
87 |
console.log('No valid crop threshold value') |
|
|
88 |
// binarize original image |
|
|
89 |
mask_3d = await slices_3d.greater([0]).asType('bool') |
|
|
90 |
} |
|
|
91 |
} else { |
|
|
92 |
mask_3d = await pipeline1_out.greater([0]).asType('bool') |
|
|
93 |
// -- pipeline1_out.dispose() |
|
|
94 |
} |
|
|
95 |
|
|
|
96 |
console.log(' mask_3d shape : ', mask_3d.shape) |
|
|
97 |
const [row_min, row_max, col_min, col_max, depth_min, depth_max] = await firstLastNonZero3D(mask_3d) |
|
|
98 |
mask_3d.dispose() |
|
|
99 |
// -- Reference voxel that cropped volume started slice with it |
|
|
100 |
const refVoxel = [row_min, col_min, depth_min] |
|
|
101 |
// -- Starting form refVoxel, size of bounding volume |
|
|
102 |
const boundVolSizeArr = [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1] |
|
|
103 |
|
|
|
104 |
// -- Extract 3d object (e.g. brain) |
|
|
105 |
const cropped_slices_3d = await slices_3d.slice( |
|
|
106 |
[row_min, col_min, depth_min], |
|
|
107 |
[row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1] |
|
|
108 |
) |
|
|
109 |
slices_3d.dispose() |
|
|
110 |
|
|
|
111 |
// -- Padding size add to cropped brain |
|
|
112 |
const pad = modelEntry.cropPadding |
|
|
113 |
|
|
|
114 |
// Create margin around the bounding volume |
|
|
115 |
let cropped_slices_3d_w_pad = await addZeroPaddingTo3dTensor(cropped_slices_3d, [pad, pad], [pad, pad], [pad, pad]) |
|
|
116 |
console.log(' cropped slices_3d with padding shape: ', cropped_slices_3d_w_pad.shape) |
|
|
117 |
|
|
|
118 |
cropped_slices_3d.dispose() |
|
|
119 |
|
|
|
120 |
if (opts.drawBoundingVolume) { |
|
|
121 |
let testVol = await removeZeroPaddingFrom3dTensor(cropped_slices_3d_w_pad, pad, pad, pad) |
|
|
122 |
console.log(' outLabelVolume without padding shape : ', testVol.shape) |
|
|
123 |
|
|
|
124 |
testVol = await resizeWithZeroPadding(testVol, num_of_slices, slice_height, slice_width, refVoxel, boundVolSizeArr) |
|
|
125 |
console.log(' outLabelVolume final shape after resizing : ', testVol.shape) |
|
|
126 |
draw3dObjBoundingVolume(tf.unstack(testVol), opts, modelEntry, callbackImg) |
|
|
127 |
testVol.dispose() |
|
|
128 |
|
|
|
129 |
return 0 |
|
|
130 |
} |
|
|
131 |
|
|
|
132 |
statData.Brainchop_Ver = 'FullVolume' |
|
|
133 |
const res = await model |
|
|
134 |
try { |
|
|
135 |
let startTime = performance.now() |
|
|
136 |
const inferenceStartTime = performance.now() |
|
|
137 |
// maxLabelPredicted in whole volume of the brain |
|
|
138 |
let maxLabelPredicted = 0 |
|
|
139 |
const transpose = modelEntry.enableTranspose |
|
|
140 |
|
|
|
141 |
if (transpose) { |
|
|
142 |
cropped_slices_3d_w_pad = await cropped_slices_3d_w_pad.transpose() |
|
|
143 |
console.log('Input transposed for pre-model') |
|
|
144 |
} else { |
|
|
145 |
console.log('Transpose not enabled for pre-model') |
|
|
146 |
} |
|
|
147 |
|
|
|
148 |
let i = 1 |
|
|
149 |
const layersLength = res.layers.length |
|
|
150 |
console.log('res.layers.length ', layersLength) |
|
|
151 |
|
|
|
152 |
const isChannelLast = isModelChnlLast(res) |
|
|
153 |
const batchSize = opts.batchSize |
|
|
154 |
const numOfChan = opts.numOfChan |
|
|
155 |
let adjusted_input_shape |
|
|
156 |
// -- Adjust model input shape |
|
|
157 |
if (isChannelLast) { |
|
|
158 |
res.layers[0].batchInputShape[1] = cropped_slices_3d_w_pad.shape[0] |
|
|
159 |
res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[1] |
|
|
160 |
res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[2] |
|
|
161 |
|
|
|
162 |
adjusted_input_shape = [ |
|
|
163 |
batchSize, |
|
|
164 |
res.layers[0].batchInputShape[1], |
|
|
165 |
res.layers[0].batchInputShape[2], |
|
|
166 |
res.layers[0].batchInputShape[3], |
|
|
167 |
numOfChan |
|
|
168 |
] |
|
|
169 |
} else { |
|
|
170 |
res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[0] |
|
|
171 |
res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[1] |
|
|
172 |
res.layers[0].batchInputShape[4] = cropped_slices_3d_w_pad.shape[2] |
|
|
173 |
|
|
|
174 |
adjusted_input_shape = [ |
|
|
175 |
batchSize, |
|
|
176 |
numOfChan, |
|
|
177 |
res.layers[0].batchInputShape[2], |
|
|
178 |
res.layers[0].batchInputShape[3], |
|
|
179 |
res.layers[0].batchInputShape[4] |
|
|
180 |
] |
|
|
181 |
} |
|
|
182 |
|
|
|
183 |
console.log(' Model batch input shape : ', res.layers[0].batchInputShape) |
|
|
184 |
// -- batchInputShape {Array} input_shape - e.g. [?, D, H, W, Ch] or [?, Ch, D, H, W] |
|
|
185 |
|
|
|
186 |
statData.Input_Shape = JSON.stringify(res.layers[0].batchInputShape) |
|
|
187 |
statData.Output_Shape = JSON.stringify(res.output.shape) |
|
|
188 |
statData.Channel_Last = await isChannelLast |
|
|
189 |
statData.Model_Param = await getModelNumParameters(res) |
|
|
190 |
statData.Model_Layers = await getModelNumLayers(res) |
|
|
191 |
statData.Model = modelEntry.modelName |
|
|
192 |
statData.Seq_Conv = modelEntry.enableSeqConv |
|
|
193 |
// statData.Extra_Info = null |
|
|
194 |
|
|
|
195 |
// Determine the number of output channels in the last layer of the model |
|
|
196 |
// e.g. 3, 50, 104 |
|
|
197 |
const outputLayer = res.layers[res.layers.length - 1] |
|
|
198 |
console.log('Output Layer : ', outputLayer) |
|
|
199 |
|
|
|
200 |
const expected_Num_labels = isChannelLast |
|
|
201 |
? outputLayer.outputShape[outputLayer.outputShape.length - 1] |
|
|
202 |
: outputLayer.outputShape[1] |
|
|
203 |
console.log('Num of output channels x: ', expected_Num_labels) |
|
|
204 |
|
|
|
205 |
const curTensor = [] |
|
|
206 |
curTensor[0] = await cropped_slices_3d_w_pad.reshape(adjusted_input_shape) |
|
|
207 |
while (true) { |
|
|
208 |
try { |
|
|
209 |
if (res.layers[i].activation.getClassName() !== 'linear') { |
|
|
210 |
curTensor[i] = await res.layers[i].apply(curTensor[i - 1]) |
|
|
211 |
} else { |
|
|
212 |
curTensor[i] = await convByOutputChannelAndInputSlicing( |
|
|
213 |
curTensor[i - 1], |
|
|
214 |
res.layers[i].getWeights()[0], |
|
|
215 |
res.layers[i].getWeights()[1], |
|
|
216 |
res.layers[i].strides, |
|
|
217 |
res.layers[i].padding, |
|
|
218 |
res.layers[i].dilationRate, |
|
|
219 |
3 |
|
|
220 |
) // important for memory use |
|
|
221 |
} |
|
|
222 |
|
|
|
223 |
tf.dispose(curTensor[i - 1]) |
|
|
224 |
} catch (err) { |
|
|
225 |
const errTxt = 'Your graphics card (e.g. Intel) may not be compatible with WebGL. ' + err.message |
|
|
226 |
callbackUI(errTxt, -1, errTxt) |
|
|
227 |
|
|
|
228 |
tf.engine().endScope() |
|
|
229 |
tf.engine().disposeVariables() |
|
|
230 |
|
|
|
231 |
statData.Inference_t = Infinity |
|
|
232 |
statData.Postprocess_t = Infinity |
|
|
233 |
statData.Status = 'Fail' |
|
|
234 |
statData.Error_Type = err.message |
|
|
235 |
statData.Extra_Err_Info = 'Failed while model layer ' + i + ' apply' |
|
|
236 |
|
|
|
237 |
callbackUI('', -1, '', statData) |
|
|
238 |
|
|
|
239 |
return 0 |
|
|
240 |
} |
|
|
241 |
|
|
|
242 |
console.log('layer output Tensor shape : ', curTensor[i].shape) |
|
|
243 |
console.log('layer count params ', res.layers[i].countParams()) |
|
|
244 |
|
|
|
245 |
res.layers[i].dispose() |
|
|
246 |
curTensor[i - 1].dispose() |
|
|
247 |
|
|
|
248 |
callbackUI('Layer ' + i.toString(), (i + 1) / layersLength) |
|
|
249 |
if (tf.memory().unreliable) { |
|
|
250 |
const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons |
|
|
251 |
callbackUI(unreliableReasons, NaN, unreliableReasons) |
|
|
252 |
} |
|
|
253 |
if (i === layersLength - 2) { |
|
|
254 |
// Stop before the last layer or classification layer. |
|
|
255 |
|
|
|
256 |
// // Create an instance of SequentialConvLayer |
|
|
257 |
// The second parameter is important for memory, |
|
|
258 |
// the larger it is, the more memory it uses |
|
|
259 |
// it was 8, but I set it to 3, got a different error |
|
|
260 |
// let seqConvLayer = new SequentialConvLayer(res, 10, isChannelLast) |
|
|
261 |
const seqConvLayer = await new SequentialConvLayer(res, 10, isChannelLast, callbackUI) |
|
|
262 |
|
|
|
263 |
// Apply the last output tensor to the seq. instance |
|
|
264 |
let outputTensor = null |
|
|
265 |
const profileInfo = await tf.profile(async () => { |
|
|
266 |
// Your tensor operations here |
|
|
267 |
outputTensor = await seqConvLayer.apply(curTensor[i]) |
|
|
268 |
}) |
|
|
269 |
console.log('profileInfo : ', profileInfo) |
|
|
270 |
|
|
|
271 |
// -- document.getElementById("progressBarChild").style.width = 0 + "%"; |
|
|
272 |
|
|
|
273 |
// Dispose the previous layer input tensor |
|
|
274 |
tf.dispose(curTensor[i]) |
|
|
275 |
// delete the used class |
|
|
276 |
// ? delete seqConvLayer |
|
|
277 |
|
|
|
278 |
// You can now use 'outputTensor' as needed |
|
|
279 |
console.log(' Output tensor', outputTensor) |
|
|
280 |
console.log(' Output tensor shape : ', outputTensor.shape) |
|
|
281 |
// Array(3) [ 256, 256, 256 ] |
|
|
282 |
|
|
|
283 |
if (outputTensor.shape.length !== 3) { |
|
|
284 |
const msg = 'Output tensor shape should be 3 dims but it is ' + outputTensor.shape.length |
|
|
285 |
callbackUI(msg, -1, msg) |
|
|
286 |
} |
|
|
287 |
|
|
|
288 |
console.log(' find array max ') |
|
|
289 |
const curBatchMaxLabel = await outputTensor.max().dataSync()[0] |
|
|
290 |
const Inference_t = ((performance.now() - startTime) / 1000).toFixed(4) |
|
|
291 |
|
|
|
292 |
if (maxLabelPredicted < curBatchMaxLabel) { |
|
|
293 |
maxLabelPredicted = curBatchMaxLabel |
|
|
294 |
} |
|
|
295 |
|
|
|
296 |
const numSegClasses = maxLabelPredicted + 1 |
|
|
297 |
console.log('Predicted num of segmentation classes', numSegClasses) |
|
|
298 |
statData.Actual_Labels = numSegClasses |
|
|
299 |
statData.Expect_Labels = expected_Num_labels |
|
|
300 |
statData.NumLabels_Match = numSegClasses === expected_Num_labels |
|
|
301 |
if (numSegClasses !== expected_Num_labels) { |
|
|
302 |
const msg = 'expected ' + expected_Num_labels + ' labels, but the predicted are ' + numSegClasses |
|
|
303 |
callbackUI(msg, -1, msg) |
|
|
304 |
} |
|
|
305 |
|
|
|
306 |
// -- Transpose back to original unpadded size |
|
|
307 |
let outLabelVolume = outputTensor.reshape([ |
|
|
308 |
cropped_slices_3d_w_pad.shape[0], |
|
|
309 |
cropped_slices_3d_w_pad.shape[1], |
|
|
310 |
cropped_slices_3d_w_pad.shape[2] |
|
|
311 |
]) |
|
|
312 |
tf.dispose(outputTensor) |
|
|
313 |
|
|
|
314 |
// Transpose MRI data to be match pytorch/keras input output |
|
|
315 |
if (transpose) { |
|
|
316 |
console.log('outLabelVolume transposed') |
|
|
317 |
outLabelVolume = outLabelVolume.transpose() |
|
|
318 |
} |
|
|
319 |
|
|
|
320 |
outLabelVolume = await removeZeroPaddingFrom3dTensor(outLabelVolume, pad, pad, pad) |
|
|
321 |
console.log(' outLabelVolume without padding shape : ', outLabelVolume.shape) |
|
|
322 |
outLabelVolume = await resizeWithZeroPadding( |
|
|
323 |
outLabelVolume, |
|
|
324 |
num_of_slices, |
|
|
325 |
slice_height, |
|
|
326 |
slice_width, |
|
|
327 |
refVoxel, |
|
|
328 |
boundVolSizeArr |
|
|
329 |
) |
|
|
330 |
console.log(' outLabelVolume final shape after resizing : ', outLabelVolume.shape) |
|
|
331 |
|
|
|
332 |
// let filterOutWithPreMask = inferenceModelsList[$$("selectModel").getValue() - 1]["filterOutWithPreMask"] |
|
|
333 |
const filterOutWithPreMask = modelEntry.filterOutWithPreMask |
|
|
334 |
// To clean the skull area wrongly segmented inphase-2. |
|
|
335 |
if (pipeline1_out != null && opts.isBrainCropMaskBased && filterOutWithPreMask) { |
|
|
336 |
const bin = await binarizeVolumeDataTensor(pipeline1_out) |
|
|
337 |
outLabelVolume = await outLabelVolume.mul(bin) |
|
|
338 |
} |
|
|
339 |
|
|
|
340 |
startTime = performance.now() |
|
|
341 |
// Generate output volume or slices |
|
|
342 |
console.log('Generating correct output') |
|
|
343 |
let outimg |
|
|
344 |
try { |
|
|
345 |
const img = await new Uint32Array(outLabelVolume.dataSync()) |
|
|
346 |
const Vshape = outLabelVolume.shape |
|
|
347 |
const Vtype = outLabelVolume.dtype |
|
|
348 |
outimg = await generateOutputSlicesV2( |
|
|
349 |
img, |
|
|
350 |
Vshape, |
|
|
351 |
Vtype, |
|
|
352 |
num_of_slices, |
|
|
353 |
numSegClasses, |
|
|
354 |
slice_height, |
|
|
355 |
slice_width, |
|
|
356 |
modelEntry, |
|
|
357 |
opts, |
|
|
358 |
niftiImage |
|
|
359 |
) |
|
|
360 |
console.log(' Phase-2 num of tensors after generateOutputSlicesV2: ', tf.memory().numTensors) |
|
|
361 |
|
|
|
362 |
tf.dispose(outLabelVolume) |
|
|
363 |
tf.engine().endScope() |
|
|
364 |
tf.engine().disposeVariables() |
|
|
365 |
} catch (error) { |
|
|
366 |
// -- Timing data to collect |
|
|
367 |
tf.engine().endScope() |
|
|
368 |
tf.engine().disposeVariables() |
|
|
369 |
console.log('Error while generating output: ', error) |
|
|
370 |
const msg = 'Failed while generating output due to limited browser memory available' |
|
|
371 |
callbackUI(msg, -1, msg) |
|
|
372 |
|
|
|
373 |
statData.Inference_t = Inference_t |
|
|
374 |
statData.Postprocess_t = Infinity |
|
|
375 |
statData.Status = 'Fail' |
|
|
376 |
statData.Error_Type = error.message |
|
|
377 |
statData.Extra_Err_Info = 'Failed while generating output' |
|
|
378 |
|
|
|
379 |
callbackUI('', -1, '', statData) |
|
|
380 |
|
|
|
381 |
return 0 |
|
|
382 |
} |
|
|
383 |
const Postprocess_t = ((performance.now() - startTime) / 1000).toFixed(4) |
|
|
384 |
|
|
|
385 |
console.log( |
|
|
386 |
'Processing the whole brain volume in tfjs for multi-class output mask took : ', |
|
|
387 |
((performance.now() - inferenceStartTime) / 1000).toFixed(4) + ' Seconds' |
|
|
388 |
) |
|
|
389 |
|
|
|
390 |
// -- Timing data to collect |
|
|
391 |
statData.Inference_t = Inference_t |
|
|
392 |
statData.Postprocess_t = Postprocess_t |
|
|
393 |
statData.Status = 'OK' |
|
|
394 |
|
|
|
395 |
callbackUI('', -1, '', statData) |
|
|
396 |
callbackUI('Segmentation finished', 0) |
|
|
397 |
callbackImg(outimg, opts, modelEntry) |
|
|
398 |
return 0 |
|
|
399 |
} else { |
|
|
400 |
i++ |
|
|
401 |
} |
|
|
402 |
} |
|
|
403 |
} catch (err) { |
|
|
404 |
callbackUI(err.message, -1, err.message) |
|
|
405 |
console.log( |
|
|
406 |
'If webgl context is lost, try to restore webgl context by visit the link ' + |
|
|
407 |
'<a href="https://support.biodigital.com/hc/en-us/articles/218322977-How-to-turn-on-WebGL-in-my-browser">here</a>' |
|
|
408 |
) |
|
|
409 |
if (tf.memory().unreliable) { |
|
|
410 |
const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons |
|
|
411 |
callbackUI(unreliableReasons, NaN, unreliableReasons) |
|
|
412 |
} |
|
|
413 |
} |
|
|
414 |
} |
|
|
415 |
|
|
|
416 |
async function inferenceFullVolumePhase2( |
|
|
417 |
model, |
|
|
418 |
slices_3d, |
|
|
419 |
num_of_slices, |
|
|
420 |
slice_height, |
|
|
421 |
slice_width, |
|
|
422 |
pipeline1_out, |
|
|
423 |
modelEntry, |
|
|
424 |
statData, |
|
|
425 |
opts, |
|
|
426 |
niftiImage |
|
|
427 |
) { |
|
|
428 |
let outimg = [] |
|
|
429 |
// --Phase-2, After remove the skull try to allocate brain volume and make inferece |
|
|
430 |
console.log(' ---- Start FullVolume inference phase-II ---- ') |
|
|
431 |
const quantileNorm = modelEntry.enableQuantileNorm |
|
|
432 |
if (quantileNorm) { |
|
|
433 |
// Quantile normalize function needs specific models to be used |
|
|
434 |
console.log('preModel Quantile normalization enabled') |
|
|
435 |
slices_3d = await quantileNormalizeVolumeData(slices_3d) |
|
|
436 |
} else { |
|
|
437 |
// Min Max Nomalize MRI data to be from 0 to 1 |
|
|
438 |
console.log('preModel Min Max normalization enabled') |
|
|
439 |
slices_3d = await minMaxNormalizeVolumeData(slices_3d) |
|
|
440 |
} |
|
|
441 |
let mask_3d |
|
|
442 |
if (pipeline1_out == null) { |
|
|
443 |
// preModel is null |
|
|
444 |
|
|
|
445 |
// Check if thresholding the MRI to remove noisy voxels for better cropping is needed. |
|
|
446 |
const autoThresholdValue = modelEntry.autoThreshold |
|
|
447 |
|
|
|
448 |
if (autoThresholdValue > 0 && autoThresholdValue <= 1) { |
|
|
449 |
// Filtered MRI from noisy voxel below autoThresholdValue |
|
|
450 |
mask_3d = await applyMriThreshold(slices_3d, autoThresholdValue) |
|
|
451 |
} else { |
|
|
452 |
console.log('No valid crop threshold value') |
|
|
453 |
// binarize original image |
|
|
454 |
mask_3d = await slices_3d.greater([0]).asType('bool') |
|
|
455 |
} |
|
|
456 |
} else { |
|
|
457 |
mask_3d = await pipeline1_out.greater([0]).asType('bool') |
|
|
458 |
// -- pipeline1_out.dispose() |
|
|
459 |
} |
|
|
460 |
console.log(' mask_3d shape : ', mask_3d.shape) |
|
|
461 |
const [row_min, row_max, col_min, col_max, depth_min, depth_max] = await firstLastNonZero3D(mask_3d) |
|
|
462 |
mask_3d.dispose() |
|
|
463 |
// -- Reference voxel that cropped volume started slice with it |
|
|
464 |
const refVoxel = [row_min, col_min, depth_min] |
|
|
465 |
console.log('refVoxel :', refVoxel) |
|
|
466 |
|
|
|
467 |
// -- Starting form refVoxel, size of bounding volume |
|
|
468 |
const boundVolSizeArr = [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1] |
|
|
469 |
|
|
|
470 |
console.log('boundVolSizeArr :', boundVolSizeArr) |
|
|
471 |
// -- Extract 3d object (e.g. brain) |
|
|
472 |
const cropped_slices_3d = slices_3d.slice( |
|
|
473 |
[row_min, col_min, depth_min], |
|
|
474 |
[row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1] |
|
|
475 |
) |
|
|
476 |
|
|
|
477 |
slices_3d.dispose() |
|
|
478 |
|
|
|
479 |
// -- Padding size add to cropped brain |
|
|
480 |
const pad = modelEntry.cropPadding |
|
|
481 |
|
|
|
482 |
// Create margin around the bounding volume |
|
|
483 |
let cropped_slices_3d_w_pad = await addZeroPaddingTo3dTensor(cropped_slices_3d, [pad, pad], [pad, pad], [pad, pad]) |
|
|
484 |
console.log(' cropped slices_3d with padding shape: ', cropped_slices_3d_w_pad.shape) |
|
|
485 |
|
|
|
486 |
cropped_slices_3d.dispose() |
|
|
487 |
|
|
|
488 |
// -- Test dim after padding .. |
|
|
489 |
// for (let i = 0; i < cropped_slices_3d_w_pad.rank; i++) { |
|
|
490 |
// if(cropped_slices_3d_w_pad.shape[i] > 256) { |
|
|
491 |
// console.log(" cropped_slices_3d_w_pad > 256 ") |
|
|
492 |
// } |
|
|
493 |
|
|
|
494 |
// } |
|
|
495 |
|
|
|
496 |
if (opts.drawBoundingVolume) { |
|
|
497 |
let testVol = await removeZeroPaddingFrom3dTensor(cropped_slices_3d_w_pad, pad, pad, pad) |
|
|
498 |
console.log(' outLabelVolume without padding shape : ', testVol.shape) |
|
|
499 |
|
|
|
500 |
testVol = await resizeWithZeroPadding(testVol, num_of_slices, slice_height, slice_width, refVoxel, boundVolSizeArr) |
|
|
501 |
console.log(' outLabelVolume final shape after resizing : ', testVol.shape) |
|
|
502 |
draw3dObjBoundingVolume(tf.unstack(testVol), opts, modelEntry, callbackImg) |
|
|
503 |
testVol.dispose() |
|
|
504 |
|
|
|
505 |
return 0 |
|
|
506 |
} |
|
|
507 |
|
|
|
508 |
statData.Brainchop_Ver = 'FullVolume' |
|
|
509 |
let startTime = performance.now() |
|
|
510 |
let adjusted_input_shape = [] |
|
|
511 |
const res = await model |
|
|
512 |
try { |
|
|
513 |
startTime = performance.now() |
|
|
514 |
const inferenceStartTime = performance.now() |
|
|
515 |
// maxLabelPredicted in whole volume of the brain |
|
|
516 |
let maxLabelPredicted = 0 |
|
|
517 |
const transpose = modelEntry.enableTranspose |
|
|
518 |
|
|
|
519 |
if (transpose) { |
|
|
520 |
cropped_slices_3d_w_pad = cropped_slices_3d_w_pad.transpose() |
|
|
521 |
console.log('Input transposed for pre-model') |
|
|
522 |
} else { |
|
|
523 |
console.log('Transpose not enabled for pre-model') |
|
|
524 |
} |
|
|
525 |
|
|
|
526 |
let i = 1 |
|
|
527 |
const layersLength = res.layers.length |
|
|
528 |
console.log('res.layers.length ', layersLength) |
|
|
529 |
|
|
|
530 |
const isChannelLast = isModelChnlLast(res) |
|
|
531 |
const batchSize = opts.batchSize |
|
|
532 |
const numOfChan = opts.numOfChan |
|
|
533 |
|
|
|
534 |
// -- Adjust model input shape |
|
|
535 |
if (isChannelLast) { |
|
|
536 |
res.layers[0].batchInputShape[1] = cropped_slices_3d_w_pad.shape[0] |
|
|
537 |
res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[1] |
|
|
538 |
res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[2] |
|
|
539 |
|
|
|
540 |
adjusted_input_shape = [ |
|
|
541 |
batchSize, |
|
|
542 |
res.layers[0].batchInputShape[1], |
|
|
543 |
res.layers[0].batchInputShape[2], |
|
|
544 |
res.layers[0].batchInputShape[3], |
|
|
545 |
numOfChan |
|
|
546 |
] |
|
|
547 |
} else { |
|
|
548 |
res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[0] |
|
|
549 |
res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[1] |
|
|
550 |
res.layers[0].batchInputShape[4] = cropped_slices_3d_w_pad.shape[2] |
|
|
551 |
|
|
|
552 |
adjusted_input_shape = [ |
|
|
553 |
batchSize, |
|
|
554 |
numOfChan, |
|
|
555 |
res.layers[0].batchInputShape[2], |
|
|
556 |
res.layers[0].batchInputShape[3], |
|
|
557 |
res.layers[0].batchInputShape[4] |
|
|
558 |
] |
|
|
559 |
} |
|
|
560 |
|
|
|
561 |
console.log(' Model batch input shape : ', res.layers[0].batchInputShape) |
|
|
562 |
// -- batchInputShape {Array} input_shape - e.g. [?, D, H, W, Ch] or [?, Ch, D, H, W] |
|
|
563 |
|
|
|
564 |
statData.Input_Shape = JSON.stringify(res.layers[0].batchInputShape) |
|
|
565 |
statData.Output_Shape = JSON.stringify(res.output.shape) |
|
|
566 |
statData.Channel_Last = await isChannelLast |
|
|
567 |
statData.Model_Param = await getModelNumParameters(res) |
|
|
568 |
statData.Model_Layers = await getModelNumLayers(res) |
|
|
569 |
statData.Model = modelEntry.modelName |
|
|
570 |
// statData.Extra_Info = null |
|
|
571 |
|
|
|
572 |
const curTensor = [] |
|
|
573 |
curTensor[0] = cropped_slices_3d_w_pad.reshape(adjusted_input_shape) |
|
|
574 |
// console.log("curTensor[0] :", curTensor[0].dataSync()) |
|
|
575 |
|
|
|
576 |
while (true) { |
|
|
577 |
try { |
|
|
578 |
// -- curTensor[i] = res.layers[i].apply( curTensor[i-1]) |
|
|
579 |
curTensor[i] = res.layers[i].apply(curTensor[i - 1]) |
|
|
580 |
} catch (err) { |
|
|
581 |
callbackUI(err.message, -1, err.message) |
|
|
582 |
tf.engine().endScope() |
|
|
583 |
tf.engine().disposeVariables() |
|
|
584 |
|
|
|
585 |
statData.Inference_t = Infinity |
|
|
586 |
statData.Postprocess_t = Infinity |
|
|
587 |
statData.Status = 'Fail' |
|
|
588 |
statData.Error_Type = err.message |
|
|
589 |
statData.Extra_Err_Info = 'Failed while model layer ' + i + ' apply' |
|
|
590 |
|
|
|
591 |
callbackUI('', -1, '', statData) |
|
|
592 |
|
|
|
593 |
return 0 |
|
|
594 |
} |
|
|
595 |
callbackUI('Layer ' + i.toString(), (i + 1) / layersLength) |
|
|
596 |
console.log('layer output Tensor shape : ', curTensor[i].shape) |
|
|
597 |
console.log('layer count params ', res.layers[i].countParams()) |
|
|
598 |
res.layers[i].dispose() |
|
|
599 |
curTensor[i - 1].dispose() |
|
|
600 |
if (tf.memory().unreliable) { |
|
|
601 |
const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons |
|
|
602 |
callbackUI(unreliableReasons, NaN, unreliableReasons) |
|
|
603 |
} |
|
|
604 |
|
|
|
605 |
if (i === layersLength - 1) { |
|
|
606 |
// prediction = res.layers[res.layers.length-1].apply(curTensor[i]) |
|
|
607 |
// curTensor[i].print() |
|
|
608 |
// outputDataBeforArgmx = Array.from(curTensor[i].dataSync()) |
|
|
609 |
|
|
|
610 |
const axis = isChannelLast ? -1 : 1 |
|
|
611 |
console.log(' find argmax ') |
|
|
612 |
console.log('last Tensor shape : ', curTensor[i].shape) |
|
|
613 |
// -- curTensor[i].shape e.g. [ 1, 256, 256, 256, 3 ] |
|
|
614 |
const expected_Num_labels = isChannelLast ? curTensor[i].shape[4] : curTensor[i].shape[1] |
|
|
615 |
let prediction_argmax |
|
|
616 |
|
|
|
617 |
// Try for argMax with model output tensor. |
|
|
618 |
|
|
|
619 |
try { |
|
|
620 |
const argMaxTime = performance.now() |
|
|
621 |
console.log(' Try tf.argMax for fullVolume ..') |
|
|
622 |
prediction_argmax = tf.argMax(curTensor[i], axis) |
|
|
623 |
console.log('tf.argMax for fullVolume takes : ', ((performance.now() - argMaxTime) / 1000).toFixed(4)) |
|
|
624 |
} catch (err1) { |
|
|
625 |
// if channel last |
|
|
626 |
if (axis === -1) { |
|
|
627 |
try { |
|
|
628 |
const argMaxLargeTime = performance.now() |
|
|
629 |
console.log(' tf.argMax failed .. try argMaxLarge ..') |
|
|
630 |
callbackUI('', -1, 'tensor2LightBuffer() is not dead code?') |
|
|
631 |
callbackUI('', -1, 'argMaxLarge() is not dead code?') |
|
|
632 |
console.log( |
|
|
633 |
'argMaxLarge for fullVolume takes : ', |
|
|
634 |
((performance.now() - argMaxLargeTime) / 1000).toFixed(4) |
|
|
635 |
) |
|
|
636 |
} catch (err2) { |
|
|
637 |
const errTxt = "argMax buffer couldn't be created due to limited memory resources." |
|
|
638 |
callbackUI(errTxt, -1, errTxt) |
|
|
639 |
|
|
|
640 |
tf.engine().endScope() |
|
|
641 |
tf.engine().disposeVariables() |
|
|
642 |
|
|
|
643 |
statData.Inference_t = Infinity |
|
|
644 |
statData.Postprocess_t = Infinity |
|
|
645 |
statData.Status = 'Fail' |
|
|
646 |
statData.Error_Type = err2.message |
|
|
647 |
statData.Extra_Err_Info = 'prediction_argmax from argMaxLarge failed' |
|
|
648 |
|
|
|
649 |
callbackUI('', -1, '', statData) |
|
|
650 |
return 0 |
|
|
651 |
} |
|
|
652 |
} else { |
|
|
653 |
// if channel first .. |
|
|
654 |
const errTxt = "argMax buffer couldn't be created due to limited memory resources." |
|
|
655 |
callbackUI(errTxt, -1, errTxt) |
|
|
656 |
|
|
|
657 |
prediction_argmax.dispose() |
|
|
658 |
|
|
|
659 |
tf.engine().endScope() |
|
|
660 |
tf.engine().disposeVariables() |
|
|
661 |
|
|
|
662 |
statData.Inference_t = Infinity |
|
|
663 |
statData.Postprocess_t = Infinity |
|
|
664 |
statData.Status = 'Fail' |
|
|
665 |
statData.Error_Type = err1.message |
|
|
666 |
statData.Extra_Err_Info = 'prediction_argmax from argMaxLarge not support yet channel first' |
|
|
667 |
|
|
|
668 |
callbackUI('', -1, '', statData) |
|
|
669 |
|
|
|
670 |
return 0 |
|
|
671 |
} |
|
|
672 |
} |
|
|
673 |
|
|
|
674 |
console.log(' prediction_argmax shape : ', prediction_argmax.shape) |
|
|
675 |
// -- prediction_argmax.shape : [ 1, 256, 256, 256] |
|
|
676 |
|
|
|
677 |
const Inference_t = ((performance.now() - startTime) / 1000).toFixed(4) |
|
|
678 |
|
|
|
679 |
// outputDataBeforArgmx = Array.from(prediction_argmax.dataSync()) |
|
|
680 |
tf.dispose(curTensor[i]) |
|
|
681 |
console.log(' find array max ') |
|
|
682 |
const curBatchMaxLabel = await prediction_argmax.max().dataSync()[0] |
|
|
683 |
|
|
|
684 |
if (maxLabelPredicted < curBatchMaxLabel) { |
|
|
685 |
maxLabelPredicted = curBatchMaxLabel |
|
|
686 |
} |
|
|
687 |
|
|
|
688 |
const numSegClasses = maxLabelPredicted + 1 |
|
|
689 |
console.log('numSegClasses', numSegClasses) |
|
|
690 |
statData.Actual_Labels = numSegClasses |
|
|
691 |
statData.Expect_Labels = expected_Num_labels |
|
|
692 |
statData.NumLabels_Match = numSegClasses === expected_Num_labels |
|
|
693 |
|
|
|
694 |
if (numSegClasses !== expected_Num_labels) { |
|
|
695 |
// errTxt = "expected " + expected_Num_labels + " labels, but the predicted are " + numSegClasses + ". For possible solutions please refer to <a href='https://github.com/neuroneural/brainchop/wiki/FAQ#Q3' target='_blank'><b> FAQ </b></a>.", "alert-error" |
|
|
696 |
const errTxt = 'expected ' + expected_Num_labels + ' labels, but the predicted are ' + numSegClasses |
|
|
697 |
callbackUI(errTxt, -1, errTxt) |
|
|
698 |
} |
|
|
699 |
|
|
|
700 |
// -- Transpose back to original unpadded size |
|
|
701 |
let outLabelVolume = prediction_argmax.reshape([ |
|
|
702 |
cropped_slices_3d_w_pad.shape[0], |
|
|
703 |
cropped_slices_3d_w_pad.shape[1], |
|
|
704 |
cropped_slices_3d_w_pad.shape[2] |
|
|
705 |
]) |
|
|
706 |
tf.dispose(prediction_argmax) |
|
|
707 |
|
|
|
708 |
// Transpose MRI data to be match pytorch/keras input output |
|
|
709 |
if (transpose) { |
|
|
710 |
console.log('outLabelVolume transposed') |
|
|
711 |
outLabelVolume = outLabelVolume.transpose() |
|
|
712 |
} |
|
|
713 |
outLabelVolume = await removeZeroPaddingFrom3dTensor(outLabelVolume, pad, pad, pad) |
|
|
714 |
console.log(' outLabelVolume without padding shape : ', outLabelVolume.shape) |
|
|
715 |
outLabelVolume = await resizeWithZeroPadding( |
|
|
716 |
outLabelVolume, |
|
|
717 |
num_of_slices, |
|
|
718 |
slice_height, |
|
|
719 |
slice_width, |
|
|
720 |
refVoxel, |
|
|
721 |
boundVolSizeArr |
|
|
722 |
) |
|
|
723 |
console.log(' outLabelVolume final shape after resizing : ', outLabelVolume.shape) |
|
|
724 |
|
|
|
725 |
const filterOutWithPreMask = modelEntry.filterOutWithPreMask |
|
|
726 |
// To clean the skull area wrongly segmented in phase-2. |
|
|
727 |
if (pipeline1_out != null && opts.isBrainCropMaskBased && filterOutWithPreMask) { |
|
|
728 |
const bin = binarizeVolumeDataTensor(pipeline1_out) |
|
|
729 |
outLabelVolume = outLabelVolume.mul(bin) |
|
|
730 |
} |
|
|
731 |
|
|
|
732 |
startTime = performance.now() |
|
|
733 |
// Generate output volume or slices |
|
|
734 |
console.log('Generating correct output') |
|
|
735 |
|
|
|
736 |
try { |
|
|
737 |
const img = new Uint32Array(outLabelVolume.dataSync()) |
|
|
738 |
const Vshape = outLabelVolume.shape |
|
|
739 |
const Vtype = outLabelVolume.dtype |
|
|
740 |
tf.dispose(outLabelVolume) |
|
|
741 |
tf.engine().endScope() |
|
|
742 |
tf.engine().disposeVariables() |
|
|
743 |
outimg = await generateOutputSlicesV2( |
|
|
744 |
img, |
|
|
745 |
Vshape, |
|
|
746 |
Vtype, |
|
|
747 |
num_of_slices, |
|
|
748 |
numSegClasses, |
|
|
749 |
slice_height, |
|
|
750 |
slice_width, |
|
|
751 |
modelEntry, |
|
|
752 |
opts, |
|
|
753 |
niftiImage |
|
|
754 |
) |
|
|
755 |
console.log(' Phase-2 num of tensors after generateOutputSlicesV2: ', tf.memory().numTensors) |
|
|
756 |
} catch (error) { |
|
|
757 |
// -- Timing data to collect |
|
|
758 |
tf.engine().endScope() |
|
|
759 |
tf.engine().disposeVariables() |
|
|
760 |
|
|
|
761 |
const errTxt = 'Failed while generating output due to limited browser memory available' |
|
|
762 |
callbackUI(errTxt, -1, errTxt) |
|
|
763 |
statData.Inference_t = Inference_t |
|
|
764 |
statData.Postprocess_t = Infinity |
|
|
765 |
statData.Status = 'Fail' |
|
|
766 |
statData.Error_Type = error.message |
|
|
767 |
statData.Extra_Err_Info = 'Failed while generating output' |
|
|
768 |
|
|
|
769 |
callbackUI('', -1, '', statData) |
|
|
770 |
|
|
|
771 |
return 0 |
|
|
772 |
} |
|
|
773 |
|
|
|
774 |
const Postprocess_t = ((performance.now() - startTime) / 1000).toFixed(4) |
|
|
775 |
|
|
|
776 |
tf.engine().disposeVariables() |
|
|
777 |
|
|
|
778 |
console.log( |
|
|
779 |
'Processing the whole brain volume in tfjs for multi-class output mask took : ', |
|
|
780 |
((performance.now() - inferenceStartTime) / 1000).toFixed(4) + ' Seconds' |
|
|
781 |
) |
|
|
782 |
|
|
|
783 |
// -- Timing data to collect |
|
|
784 |
statData.Inference_t = Inference_t |
|
|
785 |
statData.Postprocess_t = Postprocess_t |
|
|
786 |
statData.Status = 'OK' |
|
|
787 |
callbackUI('Segmentation finished', 0) |
|
|
788 |
callbackUI('', -1, '', statData) |
|
|
789 |
callbackImg(outimg, opts, modelEntry) |
|
|
790 |
|
|
|
791 |
return 0 |
|
|
792 |
} |
|
|
793 |
i++ |
|
|
794 |
} |
|
|
795 |
} catch (err) { |
|
|
796 |
callbackUI(err.message, -1, err.message) |
|
|
797 |
console.log( |
|
|
798 |
'If webgl context is lost, try to restore webgl context by visit the link ' + |
|
|
799 |
'<a href="https://support.biodigital.com/hc/en-us/articles/218322977-How-to-turn-on-WebGL-in-my-browser">here</a>' |
|
|
800 |
) |
|
|
801 |
} |
|
|
802 |
} |
|
|
803 |
|
|
|
804 |
async function inferenceFullVolumePhase1( |
|
|
805 |
model, |
|
|
806 |
slices_3d, |
|
|
807 |
num_of_slices, |
|
|
808 |
slice_height, |
|
|
809 |
slice_width, |
|
|
810 |
isModelFullVol, |
|
|
811 |
modelEntry, |
|
|
812 |
statData, |
|
|
813 |
opts, |
|
|
814 |
niftiHeader, |
|
|
815 |
niftiImage |
|
|
816 |
) { |
|
|
817 |
statData.No_SubVolumes = 1 |
|
|
818 |
// load pre-model for inference first, can be null if no pre-model such as GWM models |
|
|
819 |
if (modelEntry.preModelId) { |
|
|
820 |
const preModel = await load_model(opts.rootURL + inferenceModelsList[modelEntry.preModelId - 1].path) |
|
|
821 |
const transpose = inferenceModelsList[modelEntry.preModelId - 1].enableTranspose |
|
|
822 |
const quantileNorm = inferenceModelsList[modelEntry.preModelId - 1].enableQuantileNorm |
|
|
823 |
let preModel_slices_3d = null |
|
|
824 |
|
|
|
825 |
// -- If pre-model is not null then slices_3d mask will be generated.. |
|
|
826 |
// -- The mask is needed to remove the skull and set noise in background to 0, and get the brain bounding volume properly |
|
|
827 |
const slices_3d_mask = null |
|
|
828 |
|
|
|
829 |
if (quantileNorm) { |
|
|
830 |
// Quantile normalize function needs specific models to be used |
|
|
831 |
console.log('preModel Quantile normalization enabled') |
|
|
832 |
preModel_slices_3d = await quantileNormalizeVolumeData(slices_3d) |
|
|
833 |
} else { |
|
|
834 |
// Min Max Nomalize MRI data to be from 0 to 1 |
|
|
835 |
console.log('preModel Min Max normalization enabled') |
|
|
836 |
preModel_slices_3d = await minMaxNormalizeVolumeData(slices_3d) |
|
|
837 |
} |
|
|
838 |
|
|
|
839 |
// -- Transpose MRI data to be match pytorch/keras input output |
|
|
840 |
// -- Check if pre-model needs transpose.. |
|
|
841 |
if (transpose) { |
|
|
842 |
preModel_slices_3d = preModel_slices_3d.transpose() |
|
|
843 |
console.log('Input transposed for pre-model') |
|
|
844 |
} else { |
|
|
845 |
console.log('Transpose not enabled for pre-model') |
|
|
846 |
} |
|
|
847 |
|
|
|
848 |
statData.Brainchop_Ver = 'PreModel_FV' // e.g. "PreModel_FV" |
|
|
849 |
|
|
|
850 |
// preModel.then(function (res) { |
|
|
851 |
const res = await preModel |
|
|
852 |
|
|
|
853 |
try { |
|
|
854 |
const inferenceStartTime = performance.now() |
|
|
855 |
const preModelObject = res |
|
|
856 |
|
|
|
857 |
// read input shape from model.json object |
|
|
858 |
const preModelBatchInputShape = preModelObject.layers[0].batchInputShape |
|
|
859 |
console.log(' Pre-Model batch input shape : ', preModelBatchInputShape) |
|
|
860 |
|
|
|
861 |
// -- Verify input shape |
|
|
862 |
if (preModelBatchInputShape.length !== 5) { |
|
|
863 |
const errTxt = 'The pre-model input shape must be 5D ' |
|
|
864 |
callbackUI(errTxt, -1, errTxt) |
|
|
865 |
return 0 |
|
|
866 |
} |
|
|
867 |
|
|
|
868 |
const isPreModelChannelLast = await isModelChnlLast(preModelObject) |
|
|
869 |
const batchSize = opts.batchSize |
|
|
870 |
const numOfChan = opts.numOfChan |
|
|
871 |
let batch_D, batch_H, batch_W |
|
|
872 |
let preModel_input_shape |
|
|
873 |
if (isPreModelChannelLast) { |
|
|
874 |
console.log('Pre-Model Channel Last') |
|
|
875 |
if (isNaN(preModelBatchInputShape[4]) || preModelBatchInputShape[4] !== 1) { |
|
|
876 |
const errTxt = 'The number of channels for pre-model input shape must be 1' |
|
|
877 |
callbackUI(errTxt, -1, errTxt) |
|
|
878 |
return 0 |
|
|
879 |
} |
|
|
880 |
|
|
|
881 |
batch_D = preModelBatchInputShape[1] |
|
|
882 |
batch_H = preModelBatchInputShape[2] |
|
|
883 |
batch_W = preModelBatchInputShape[3] |
|
|
884 |
|
|
|
885 |
preModel_input_shape = [batchSize, batch_D, batch_H, batch_W, numOfChan] |
|
|
886 |
} else { |
|
|
887 |
console.log('Pre-Model Channel First') |
|
|
888 |
if (isNaN(preModelBatchInputShape[1]) || preModelBatchInputShape[1] !== 1) { |
|
|
889 |
const errTxt = 'The number of channels for pre-model input shape must be 1' |
|
|
890 |
callbackUI(errTxt, -1, errTxt) |
|
|
891 |
return 0 |
|
|
892 |
} |
|
|
893 |
|
|
|
894 |
batch_D = preModelBatchInputShape[2] |
|
|
895 |
batch_H = preModelBatchInputShape[3] |
|
|
896 |
batch_W = preModelBatchInputShape[4] |
|
|
897 |
|
|
|
898 |
preModel_input_shape = [batchSize, numOfChan, batch_D, batch_H, batch_W] |
|
|
899 |
} |
|
|
900 |
|
|
|
901 |
statData.Input_Shape = JSON.stringify(preModel_input_shape) |
|
|
902 |
statData.Output_Shape = JSON.stringify(preModelObject.output.shape) |
|
|
903 |
statData.Channel_Last = await isPreModelChannelLast |
|
|
904 |
statData.Model_Param = await getModelNumParameters(preModelObject) |
|
|
905 |
statData.Model_Layers = await getModelNumLayers(preModelObject) |
|
|
906 |
|
|
|
907 |
// maxLabelPredicted in whole volume of the brain |
|
|
908 |
let maxLabelPredicted = 0 |
|
|
909 |
|
|
|
910 |
let i = 1 |
|
|
911 |
const layersLength = res.layers.length |
|
|
912 |
|
|
|
913 |
const curTensor = [] |
|
|
914 |
// -- reshape MRI to model input shape |
|
|
915 |
curTensor[0] = preModel_slices_3d.reshape(preModel_input_shape) |
|
|
916 |
|
|
|
917 |
// Dispose the volume |
|
|
918 |
tf.dispose(preModel_slices_3d) |
|
|
919 |
while (true) { |
|
|
920 |
try { |
|
|
921 |
curTensor[i] = res.layers[i].apply(curTensor[i - 1]) |
|
|
922 |
} catch (err) { |
|
|
923 |
const errTxt = 'Your graphics card (e.g. Intel) may not be compatible with WebGL. ' + err.message |
|
|
924 |
callbackUI(errTxt, -1, errTxt) |
|
|
925 |
|
|
|
926 |
tf.engine().endScope() |
|
|
927 |
tf.engine().disposeVariables() |
|
|
928 |
|
|
|
929 |
statData.Inference_t = Infinity |
|
|
930 |
statData.Postprocess_t = Infinity |
|
|
931 |
statData.Status = 'Fail' |
|
|
932 |
statData.Error_Type = err.message |
|
|
933 |
statData.Extra_Err_Info = 'PreModel Failed while model layer ' + i + ' apply' |
|
|
934 |
|
|
|
935 |
callbackUI('', -1, '', statData) |
|
|
936 |
|
|
|
937 |
return 0 |
|
|
938 |
} |
|
|
939 |
|
|
|
940 |
res.layers[i].dispose() |
|
|
941 |
curTensor[i - 1].dispose() |
|
|
942 |
|
|
|
943 |
callbackUI('Layer ' + i.toString(), (i + 1) / layersLength) |
|
|
944 |
if (tf.memory().unreliable) { |
|
|
945 |
const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons |
|
|
946 |
callbackUI(unreliableReasons, NaN, unreliableReasons) |
|
|
947 |
} |
|
|
948 |
|
|
|
949 |
if (i === layersLength - 1) { |
|
|
950 |
// -- prediction = res.layers[res.layers.length-1].apply(curTensor[i]) |
|
|
951 |
// -- curTensor[i].print() |
|
|
952 |
// -- outputDataBeforArgmx = Array.from(curTensor[i].dataSync()) |
|
|
953 |
|
|
|
954 |
const axis = isPreModelChannelLast ? -1 : 1 |
|
|
955 |
console.log(' find argmax ') |
|
|
956 |
console.log('last Tensor shape : ', curTensor[i].shape) |
|
|
957 |
// -- curTensor[i].shape : [ 1, 256, 256, 256, 3 ] |
|
|
958 |
const expected_Num_labels = isPreModelChannelLast ? curTensor[i].shape[4] : curTensor[i].shape[1] |
|
|
959 |
let prediction_argmax |
|
|
960 |
|
|
|
961 |
// Try for argMax with model output tensor. |
|
|
962 |
|
|
|
963 |
try { |
|
|
964 |
console.log(' Try tf.argMax for fullVolume ..') |
|
|
965 |
prediction_argmax = await tf.argMax(curTensor[i], axis) |
|
|
966 |
} catch (err1) { |
|
|
967 |
// if channel last |
|
|
968 |
if (axis === -1) { |
|
|
969 |
try { |
|
|
970 |
const argMaxLargeTime = performance.now() |
|
|
971 |
console.log(' tf.argMax failed .. try argMaxLarge ..') |
|
|
972 |
callbackUI('', -1, 'tensor2LightBuffer() is not dead code?') |
|
|
973 |
callbackUI('', -1, 'argMaxLarge() is not dead code?') |
|
|
974 |
console.log( |
|
|
975 |
'argMaxLarge for fullVolume takes : ', |
|
|
976 |
((performance.now() - argMaxLargeTime) / 1000).toFixed(4) |
|
|
977 |
) |
|
|
978 |
} catch (err2) { |
|
|
979 |
const errTxt = "argMax buffer couldn't be created due to limited memory resources." |
|
|
980 |
callbackUI(errTxt, -1, errTxt) |
|
|
981 |
|
|
|
982 |
prediction_argmax.dispose() |
|
|
983 |
|
|
|
984 |
tf.engine().endScope() |
|
|
985 |
tf.engine().disposeVariables() |
|
|
986 |
|
|
|
987 |
statData.Inference_t = Infinity |
|
|
988 |
statData.Postprocess_t = Infinity |
|
|
989 |
statData.Status = 'Fail' |
|
|
990 |
statData.Error_Type = err2.message |
|
|
991 |
statData.Extra_Err_Info = 'preModel prediction_argmax from argMaxLarge failed' |
|
|
992 |
|
|
|
993 |
callbackUI('', -1, '', statData) |
|
|
994 |
|
|
|
995 |
return 0 |
|
|
996 |
} |
|
|
997 |
} else { |
|
|
998 |
// if channel first .. |
|
|
999 |
const errTxt = "argMax buffer couldn't be created due to limited memory resources." |
|
|
1000 |
callbackUI(errTxt, -1, errTxt) |
|
|
1001 |
|
|
|
1002 |
prediction_argmax.dispose() |
|
|
1003 |
|
|
|
1004 |
tf.engine().endScope() |
|
|
1005 |
tf.engine().disposeVariables() |
|
|
1006 |
|
|
|
1007 |
statData.Inference_t = Infinity |
|
|
1008 |
statData.Postprocess_t = Infinity |
|
|
1009 |
statData.Status = 'Fail' |
|
|
1010 |
statData.Error_Type = err1.message |
|
|
1011 |
statData.Extra_Err_Info = 'preModel prediction_argmax from argMaxLarge not support yet channel first' |
|
|
1012 |
|
|
|
1013 |
callbackUI('', -1, '', statData) |
|
|
1014 |
|
|
|
1015 |
return 0 |
|
|
1016 |
} |
|
|
1017 |
} |
|
|
1018 |
|
|
|
1019 |
console.log(' Pre-model prediction_argmax shape : ', prediction_argmax.shape) |
|
|
1020 |
// -- prediction_argmax.shape : [ 1, 256, 256, 256] |
|
|
1021 |
|
|
|
1022 |
const Inference_t = ((performance.now() - inferenceStartTime) / 1000).toFixed(4) |
|
|
1023 |
|
|
|
1024 |
tf.dispose(curTensor[i]) |
|
|
1025 |
|
|
|
1026 |
console.log(' Pre-model find array max ') |
|
|
1027 |
const curBatchMaxLabel = await prediction_argmax.max().dataSync()[0] |
|
|
1028 |
|
|
|
1029 |
if (maxLabelPredicted < curBatchMaxLabel) { |
|
|
1030 |
maxLabelPredicted = curBatchMaxLabel |
|
|
1031 |
} |
|
|
1032 |
|
|
|
1033 |
const numSegClasses = maxLabelPredicted + 1 |
|
|
1034 |
console.log('Pre-model numSegClasses', numSegClasses) |
|
|
1035 |
|
|
|
1036 |
statData.Actual_Labels = numSegClasses |
|
|
1037 |
statData.Expect_Labels = expected_Num_labels |
|
|
1038 |
statData.NumLabels_Match = numSegClasses === expected_Num_labels |
|
|
1039 |
|
|
|
1040 |
// -- Transpose back to original unpadded size |
|
|
1041 |
let outLabelVolume = await prediction_argmax.reshape([num_of_slices, slice_height, slice_width]) |
|
|
1042 |
tf.dispose(prediction_argmax) |
|
|
1043 |
// Transpose MRI data to be match pytorch/keras input output |
|
|
1044 |
if (transpose) { |
|
|
1045 |
console.log('Pre-model outLabelVolume transposed') |
|
|
1046 |
outLabelVolume = outLabelVolume.transpose() |
|
|
1047 |
} |
|
|
1048 |
const startTime = performance.now() |
|
|
1049 |
// Generate output volume or slices |
|
|
1050 |
console.log('Generating pre-model output') |
|
|
1051 |
let slices_3d_mask |
|
|
1052 |
try { |
|
|
1053 |
const unstackOutVolumeTensor = await tf.unstack(outLabelVolume) |
|
|
1054 |
slices_3d_mask = await generateBrainMask( |
|
|
1055 |
unstackOutVolumeTensor, |
|
|
1056 |
num_of_slices, |
|
|
1057 |
slice_height, |
|
|
1058 |
slice_width, |
|
|
1059 |
modelEntry, |
|
|
1060 |
opts, |
|
|
1061 |
niftiHeader, |
|
|
1062 |
niftiImage, |
|
|
1063 |
false |
|
|
1064 |
) |
|
|
1065 |
await tf.dispose(outLabelVolume) |
|
|
1066 |
console.log(' Phase-1 num of tensors after generateBrainMask: ', tf.memory().numTensors) |
|
|
1067 |
} catch (error) { |
|
|
1068 |
// -- Timing data to collect |
|
|
1069 |
tf.engine().endScope() |
|
|
1070 |
tf.engine().disposeVariables() |
|
|
1071 |
|
|
|
1072 |
const errTxt = 'Failed while generating pre-model output due to limited browser memory available' |
|
|
1073 |
callbackUI(errTxt, -1, errTxt) |
|
|
1074 |
|
|
|
1075 |
statData.Inference_t = Inference_t |
|
|
1076 |
statData.Postprocess_t = Infinity |
|
|
1077 |
statData.Status = 'Fail' |
|
|
1078 |
statData.Error_Type = error.message |
|
|
1079 |
statData.Extra_Err_Info = 'Pre-model failed while generating output' |
|
|
1080 |
|
|
|
1081 |
callbackUI('', -1, '', statData) |
|
|
1082 |
|
|
|
1083 |
return 0 |
|
|
1084 |
} |
|
|
1085 |
const Postprocess_t = ((performance.now() - startTime) / 1000).toFixed(4) |
|
|
1086 |
console.log( |
|
|
1087 |
'Pre-model processing the whole brain volume in tfjs tooks for multi-class output mask : ', |
|
|
1088 |
((performance.now() - inferenceStartTime) / 1000).toFixed(4) + ' Seconds' |
|
|
1089 |
) |
|
|
1090 |
|
|
|
1091 |
// -- Timing data to collect |
|
|
1092 |
statData.Inference_t = Inference_t |
|
|
1093 |
statData.Postprocess_t = Postprocess_t |
|
|
1094 |
statData.Status = 'OK' |
|
|
1095 |
|
|
|
1096 |
callbackUI('', -1, '', statData) |
|
|
1097 |
|
|
|
1098 |
if (slices_3d_mask == null) { |
|
|
1099 |
const msg = 'slice_3d_mask failed ...' |
|
|
1100 |
callbackUI(msg, -1, msg) |
|
|
1101 |
return 0 |
|
|
1102 |
} else { |
|
|
1103 |
// --Phase-2, After remove the skull try to allocate brain volume and make inferece |
|
|
1104 |
console.log('--- pre-model done ---') |
|
|
1105 |
// --mask_3d = slices_3d_mask.greater([0]).asType('bool') |
|
|
1106 |
// --slices_3d_mask.dispose() |
|
|
1107 |
|
|
|
1108 |
if (isModelFullVol) { |
|
|
1109 |
if (modelEntry.enableSeqConv) { |
|
|
1110 |
// Mask cropping & seq conv |
|
|
1111 |
// Non-Atlas model (e.g. GWM) needs sequential convolution layer. |
|
|
1112 |
// Sequential convolution layer to be used after cropping - slow but reliable on most machines |
|
|
1113 |
console.log('------ Mask Cropping & Seq Convoluton ------') |
|
|
1114 |
await inferenceFullVolumeSeqCovLayerPhase2( |
|
|
1115 |
opts, |
|
|
1116 |
modelEntry, |
|
|
1117 |
model, |
|
|
1118 |
slices_3d, |
|
|
1119 |
num_of_slices, |
|
|
1120 |
slice_height, |
|
|
1121 |
slice_width, |
|
|
1122 |
slices_3d_mask, |
|
|
1123 |
statData, |
|
|
1124 |
niftiImage |
|
|
1125 |
) |
|
|
1126 |
return 0 |
|
|
1127 |
// inferenceFullVolumeSeqCovLayerPhase2(model, slices_3d.transpose(), num_of_slices, slice_height, slice_width, slices_3d_mask) |
|
|
1128 |
} else { |
|
|
1129 |
// Mask cropping BUT no seq conv |
|
|
1130 |
console.log('------ Mask Cropping - NO Seq Convoluton ------') |
|
|
1131 |
await inferenceFullVolumePhase2( |
|
|
1132 |
model, |
|
|
1133 |
slices_3d, |
|
|
1134 |
num_of_slices, |
|
|
1135 |
slice_height, |
|
|
1136 |
slice_width, |
|
|
1137 |
slices_3d_mask, |
|
|
1138 |
modelEntry, |
|
|
1139 |
statData, |
|
|
1140 |
opts, |
|
|
1141 |
niftiImage |
|
|
1142 |
) |
|
|
1143 |
// inferenceFullVolumePhase2(model, slices_3d.transpose(), num_of_slices, slice_height, slice_width, slices_3d_mask) |
|
|
1144 |
} |
|
|
1145 |
} else { |
|
|
1146 |
// -- In version 3.0.0 this function not used |
|
|
1147 |
callbackUI('', -1, 'inferenceSubVolumes() is not dead code?') |
|
|
1148 |
} |
|
|
1149 |
} |
|
|
1150 |
} |
|
|
1151 |
i++ |
|
|
1152 |
} |
|
|
1153 |
} catch (err) { |
|
|
1154 |
callbackUI(err.message, -1, err.message) |
|
|
1155 |
console.log( |
|
|
1156 |
'If webgl context is lost, try to restore webgl context by visit the link ' + |
|
|
1157 |
'<a href="https://support.biodigital.com/hc/en-us/articles/218322977-How-to-turn-on-WebGL-in-my-browser">here</a>' |
|
|
1158 |
) |
|
|
1159 |
|
|
|
1160 |
// document.getElementById("webGl2Status").style.backgroundColor = isWebGL2ContextLost() ? "Red" : "Green" |
|
|
1161 |
// document.getElementById("memoryStatus").style.backgroundColor = tf.memory().unreliable ? "Red" : "Green" |
|
|
1162 |
} |
|
|
1163 |
// }) |
|
|
1164 |
|
|
|
1165 |
// -- if(...) end |
|
|
1166 |
} else { |
|
|
1167 |
// No preModel |
|
|
1168 |
|
|
|
1169 |
// --Phase-2, After remove the skull try to allocate brain volume and make inferece |
|
|
1170 |
console.log('--- No pre-model is selected ---') |
|
|
1171 |
console.log('------ Run voxel cropping ------') |
|
|
1172 |
// -- mask_3d = slices_3d.greater([0]).asType('bool') |
|
|
1173 |
|
|
|
1174 |
if (isModelFullVol) { |
|
|
1175 |
if (modelEntry.enableSeqConv) { |
|
|
1176 |
// Voxel cropping & seq conv |
|
|
1177 |
// Non-Atlas model (e.g. GWM) needs sequential convolution layer. |
|
|
1178 |
// Sequential convolution layer to be used after cropping - slow but reliable on most machines |
|
|
1179 |
console.log('------ Seq Convoluton ------') |
|
|
1180 |
await inferenceFullVolumeSeqCovLayerPhase2( |
|
|
1181 |
opts, |
|
|
1182 |
modelEntry, |
|
|
1183 |
model, |
|
|
1184 |
slices_3d, |
|
|
1185 |
num_of_slices, |
|
|
1186 |
slice_height, |
|
|
1187 |
slice_width, |
|
|
1188 |
null, |
|
|
1189 |
statData, |
|
|
1190 |
niftiImage |
|
|
1191 |
) |
|
|
1192 |
} else { |
|
|
1193 |
// Voxel cropping BUT no seq conv |
|
|
1194 |
// todo: we do not use result const outimg = await |
|
|
1195 |
inferenceFullVolumePhase2( |
|
|
1196 |
model, |
|
|
1197 |
slices_3d, |
|
|
1198 |
num_of_slices, |
|
|
1199 |
slice_height, |
|
|
1200 |
slice_width, |
|
|
1201 |
null, |
|
|
1202 |
modelEntry, |
|
|
1203 |
statData, |
|
|
1204 |
opts, |
|
|
1205 |
niftiImage |
|
|
1206 |
) |
|
|
1207 |
} |
|
|
1208 |
} else { |
|
|
1209 |
// -- In version 3.0.0 this function not used |
|
|
1210 |
callbackUI('', -1, 'inferenceSubVolumes() is not dead code?') |
|
|
1211 |
} |
|
|
1212 |
} |
|
|
1213 |
} |
|
|
1214 |
|
|
|
1215 |
async function enableProductionMode(textureF16Flag = true) { |
|
|
1216 |
// -- tf.setBackend('cpu') |
|
|
1217 |
tf.setBackend('webgl') |
|
|
1218 |
// -- tf.removeBackend('cpu') |
|
|
1219 |
// -- Calling enableProdMode() method |
|
|
1220 |
await tf.enableProdMode() |
|
|
1221 |
// -- Setting debug mode of the environment |
|
|
1222 |
tf.env().set('DEBUG', false) |
|
|
1223 |
tf.env().set('WEBGL_FORCE_F16_TEXTURES', textureF16Flag) |
|
|
1224 |
// -- set this flag so that textures are deleted when tensors are disposed. |
|
|
1225 |
tf.env().set('WEBGL_DELETE_TEXTURE_THRESHOLD', -1) |
|
|
1226 |
// -- tf.env().set('WEBGL_PACK', false) |
|
|
1227 |
// -- Put ready after sets above |
|
|
1228 |
await tf.ready() |
|
|
1229 |
// -- Printing output |
|
|
1230 |
console.log('tf env() flags :', tf.env().flags) |
|
|
1231 |
console.log('tf env() features :', tf.env().features) |
|
|
1232 |
console.log('tf env total features: ', Object.keys(tf.env().features).length) |
|
|
1233 |
console.log('tf backend: ', tf.getBackend()) |
|
|
1234 |
} |
|
|
1235 |
|
|
|
1236 |
async function runInferenceWW(opts, modelEntry, niftiHeader, niftiImage) { |
|
|
1237 |
const statData = [] |
|
|
1238 |
statData.startTime = Date.now() // for common webworker/mainthread do not use performance.now() |
|
|
1239 |
callbackUI('Segmentation started', 0) |
|
|
1240 |
const batchSize = opts.batchSize |
|
|
1241 |
const numOfChan = opts.numOfChan |
|
|
1242 |
if (isNaN(batchSize) || batchSize !== 1) { |
|
|
1243 |
const errTxt = 'The batch Size for input shape must be 1' |
|
|
1244 |
callbackUI(errTxt, -1, errTxt) |
|
|
1245 |
return 0 |
|
|
1246 |
} |
|
|
1247 |
if (isNaN(numOfChan) || numOfChan !== 1) { |
|
|
1248 |
const errTxt = 'The number of channels for input shape must be 1' |
|
|
1249 |
callbackUI(errTxt, -1, errTxt) |
|
|
1250 |
return 0 |
|
|
1251 |
} |
|
|
1252 |
tf.engine().startScope() |
|
|
1253 |
console.log('Batch size: ', batchSize) |
|
|
1254 |
console.log('Num of Channels: ', numOfChan) |
|
|
1255 |
const model = await load_model(opts.rootURL + modelEntry.path) |
|
|
1256 |
await enableProductionMode(true) |
|
|
1257 |
statData.TF_Backend = tf.getBackend() |
|
|
1258 |
const modelObject = model |
|
|
1259 |
let batchInputShape = [] |
|
|
1260 |
// free global variable of 16777216 voxel |
|
|
1261 |
// allOutputSlices3DCC1DimArray = [] |
|
|
1262 |
// outputSceneRendered = false |
|
|
1263 |
// read input shape from model.json object |
|
|
1264 |
batchInputShape = modelObject.layers[0].batchInputShape |
|
|
1265 |
console.log(' Model batch input shape : ', batchInputShape) |
|
|
1266 |
// -- Verify input shape |
|
|
1267 |
if (batchInputShape.length !== 5) { |
|
|
1268 |
const errTxt = 'The model input shape must be 5D' |
|
|
1269 |
callbackUI(errTxt, -1, errTxt) |
|
|
1270 |
return 0 |
|
|
1271 |
} |
|
|
1272 |
let batch_D, batch_H, batch_W |
|
|
1273 |
const slice_width = niftiHeader.dims[1] |
|
|
1274 |
const slice_height = niftiHeader.dims[2] |
|
|
1275 |
const num_of_slices = niftiHeader.dims[3] |
|
|
1276 |
const isChannelLast = await isModelChnlLast(modelObject) |
|
|
1277 |
if (isChannelLast) { |
|
|
1278 |
console.log('Model Channel Last') |
|
|
1279 |
if (isNaN(batchInputShape[4]) || batchInputShape[4] !== 1) { |
|
|
1280 |
const errTxt = 'The number of channels for input shape must be 1' |
|
|
1281 |
callbackUI(errTxt, -1, errTxt) |
|
|
1282 |
return 0 |
|
|
1283 |
} |
|
|
1284 |
batch_D = batchInputShape[1] |
|
|
1285 |
batch_H = batchInputShape[2] |
|
|
1286 |
batch_W = batchInputShape[3] |
|
|
1287 |
} else { |
|
|
1288 |
console.log('Model Channel First') |
|
|
1289 |
if (isNaN(batchInputShape[1]) || batchInputShape[1] !== 1) { |
|
|
1290 |
const errTxt = 'The number of channels for input shape must be 1' |
|
|
1291 |
callbackUI(errTxt, -1, errTxt) |
|
|
1292 |
return 0 |
|
|
1293 |
} |
|
|
1294 |
batch_D = batchInputShape[2] |
|
|
1295 |
batch_H = batchInputShape[3] |
|
|
1296 |
batch_W = batchInputShape[4] |
|
|
1297 |
} |
|
|
1298 |
// const input_shape = [batchSize, numOfChan, batch_D, batch_H, batch_W] |
|
|
1299 |
// --Check whether the model will make inference at once as FullVolumeModel |
|
|
1300 |
let isModelFullVol |
|
|
1301 |
if (batch_D === 256 && batch_H === 256 && batch_W === 256) { |
|
|
1302 |
isModelFullVol = true |
|
|
1303 |
} else { |
|
|
1304 |
isModelFullVol = false |
|
|
1305 |
} |
|
|
1306 |
statData.isModelFullVol = isModelFullVol |
|
|
1307 |
// Model output number of segmentations |
|
|
1308 |
let slices_3d = await getAllSlicesDataAsTF3D(num_of_slices, niftiHeader, niftiImage) |
|
|
1309 |
const transpose = modelEntry.enableTranspose |
|
|
1310 |
const enableCrop = modelEntry.enableCrop |
|
|
1311 |
if (isModelFullVol) { |
|
|
1312 |
if (enableCrop) { |
|
|
1313 |
// FullVolume with Crop option before inference .. |
|
|
1314 |
// pre-model to mask the volume, can also be null and the cropping will be on the MRI. |
|
|
1315 |
await inferenceFullVolumePhase1( |
|
|
1316 |
model, |
|
|
1317 |
slices_3d, |
|
|
1318 |
num_of_slices, |
|
|
1319 |
slice_height, |
|
|
1320 |
slice_width, |
|
|
1321 |
isModelFullVol, |
|
|
1322 |
modelEntry, |
|
|
1323 |
statData, |
|
|
1324 |
opts, |
|
|
1325 |
niftiHeader, |
|
|
1326 |
niftiImage |
|
|
1327 |
) |
|
|
1328 |
} else { |
|
|
1329 |
// Transpose MRI data to be match pytorch/keras input output |
|
|
1330 |
console.log('Cropping Disabled') |
|
|
1331 |
|
|
|
1332 |
if (transpose) { |
|
|
1333 |
slices_3d = slices_3d.transpose() |
|
|
1334 |
console.log('Input transposed') |
|
|
1335 |
} else { |
|
|
1336 |
console.log('Transpose NOT Enabled') |
|
|
1337 |
} |
|
|
1338 |
|
|
|
1339 |
const enableSeqConv = modelEntry.enableSeqConv |
|
|
1340 |
|
|
|
1341 |
if (enableSeqConv) { |
|
|
1342 |
callbackUI('', -1, 'inferenceFullVolumeSeqCovLayer() is not dead code?') |
|
|
1343 |
} else { |
|
|
1344 |
callbackUI('', -1, 'inferenceFullVolume() is not dead code?') |
|
|
1345 |
} |
|
|
1346 |
} |
|
|
1347 |
} |
|
|
1348 |
} |
|
|
1349 |
|
|
|
1350 |
self.addEventListener( |
|
|
1351 |
'message', |
|
|
1352 |
function (event) { |
|
|
1353 |
runInferenceWW(event.data.opts, event.data.modelEntry, event.data.niftiHeader, event.data.niftiImage) |
|
|
1354 |
}, |
|
|
1355 |
false |
|
|
1356 |
) |