Diff of /brainchop-parameters.js [000000] .. [b86468]

Switch to unified view

a b/brainchop-parameters.js
1
export {inferenceModelsList, brainChopOpts }
2
3
const brainChopOpts = {
4
  // General settings for input shape [batchSize, batch_D, batch_H, batch_W, numOfChan]
5
  batchSize: 1, // How many batches are used during each inference iteration
6
  numOfChan: 1, // num of channel of the input shape
7
  isColorEnable: true, // If false, grey scale will enabled
8
  isAutoColors: true, // If false, manualColorsRange will be in use
9
  bgLabelValue: 0, // Semenatic Segmentation background label value
10
  drawBoundingVolume: false, // plot bounding volume used to crop the brain
11
  isGPU: true, //use WebGL/GPU (faster) or CPU (compatibility)
12
  isBrainCropMaskBased: true, // Check if brain masking will be used for cropping & optional show or brain tissue will be used
13
  showPhase1Output: false, // This will load to papaya the output of phase-1 (ie. brain mask or brain tissue)
14
  isPostProcessEnable: true, // If true 3D Connected Components filter will apply
15
  isContoursViewEnable: false, // If true 3D contours of the labeled regions will apply
16
  browserArrayBufferMaxZDim: 30, // This value depends on Memory available
17
  telemetryFlag: false, // Ethical and transparent collection of browser usage while adhering to security and privacy standards
18
  chartXaxisStepPercent: 10, // percent from total labels on Xaxis
19
  uiSampleName: 'BC_UI_Sample', // Sample name used by interface
20
  atlasSelectedColorTable: 'Fire' // Select from ["Hot-and-Cold", "Fire", "Grayscale", "Gold", "Spectrum"]
21
}
22
23
// Inference Models, the ids must start from 1 in sequence
24
const inferenceModelsList = [
25
  {
26
    id: 1,
27
    type: 'Segmentation',
28
    path: '/models/model5_gw_ae/model.json',
29
    modelName: '\u26A1 Tissue GWM (light)',
30
    colormapPath: './models/model5_gw_ae/colormap3.json',
31
    preModelId: null, // Model run first e.g.  crop the brain   { null, 1, 2, ..  }
32
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
33
    isBatchOverlapEnable: false, // create extra overlap batches for inference
34
    numOverlapBatches: 0, // Number of extra overlap batches for inference
35
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
36
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
37
    cropPadding: 18, // Padding size add to cropped brain
38
    autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
39
    enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
40
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
41
    enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
42
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
43
    warning: null, // Warning message to show when select the model.
44
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
45
    description:
46
      'Gray and white matter segmentation model. Operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than the subvolume model.'
47
  },
48
  {
49
    id: 2,
50
    type: 'Segmentation',
51
    path: '/models/model20chan3cls/model.json',
52
    modelName: '\u{1F52A} Tissue GWM (High Acc)',
53
    colormapPath: './models/model20chan3cls/colormap.json',
54
    preModelId: null, // Model run first e.g.  crop the brain   { null, 1, 2, ..  }
55
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
56
    isBatchOverlapEnable: false, // create extra overlap batches for inference
57
    numOverlapBatches: 0, // Number of extra overlap batches for inference
58
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
59
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
60
    cropPadding: 0, // Padding size add to cropped brain
61
    autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
62
    enableQuantileNorm: true, // Some models needs Quantile Normaliztion.
63
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
64
    enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
65
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
66
    warning:
67
      "This model may need dedicated graphics card.  For more info please check with Browser Resources <i class='fa fa-cogs'></i>.",
68
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
69
    description:
70
      'Gray and white matter segmentation model. Operates on full T1 image in a single pass but needs a dedicated graphics card to operate. Provides the best accuracy with hard cropping for better speed'
71
  },
72
  {
73
    id: 3,
74
    type: 'Segmentation',
75
    path: '/models/model20chan3cls/model.json',
76
    modelName: '\u{1F52A} Tissue GWM (High Acc, Low Mem)',
77
    colormapPath: './models/model20chan3cls/colormap.json',
78
    preModelId: null, // Model run first e.g.  crop the brain   { null, 1, 2, ..  }
79
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
80
    isBatchOverlapEnable: false, // create extra overlap batches for inference
81
    numOverlapBatches: 0, // Number of extra overlap batches for inference
82
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
83
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
84
    cropPadding: 0, // Padding size add to cropped brain
85
    autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
86
    enableQuantileNorm: true, // Some models needs Quantile Normaliztion.
87
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
88
    enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer
89
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
90
    warning:
91
      "This model may need dedicated graphics card.  For more info please check with Browser Resources <i class='fa fa-cogs'></i>.",
92
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
93
    description:
94
      'Gray and white matter segmentation model. Operates on full T1 image in a single pass but needs a dedicated graphics card to operate. Provides high accuracy and fit low memory available but slower'
95
  },
96
  {
97
    id: 4,
98
    type: 'Atlas',
99
    path: '/models/model30chan18cls/model.json',
100
    modelName: '\u{1FA93} Subcortical + GWM (High Mem, Fast)',
101
    colormapPath: './models/model30chan18cls/colormap.json',
102
    preModelId: null, // Model run first e.g.  crop the brain  { null, 1, 2, ..  }
103
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
104
    isBatchOverlapEnable: false, // create extra overlap batches for inference
105
    numOverlapBatches: 200, // Number of extra overlap batches for inference
106
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
107
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
108
    cropPadding: 0, // Padding size add to cropped brain
109
    autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
110
    enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
111
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
112
    enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
113
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
114
    warning:
115
      "This model may need dedicated graphics card.  For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
116
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
117
    description:
118
      'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.'
119
  },
120
  {
121
    id: 5,
122
    type: 'Atlas',
123
    path: '/models/model30chan18cls/model.json',
124
    modelName: '\u{1FA93} Subcortical + GWM (Low Mem, Slow)',
125
    colormapPath: './models/model30chan18cls/colormap.json',
126
    preModelId: null, // Model run first e.g.  crop the brain  { null, 1, 2, ..  }
127
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
128
    isBatchOverlapEnable: false, // create extra overlap batches for inference
129
    numOverlapBatches: 200, // Number of extra overlap batches for inference
130
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
131
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
132
    cropPadding: 0, // Padding size add to cropped brain
133
    autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
134
    enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
135
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
136
    enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer
137
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
138
    warning:
139
      "This model may need dedicated graphics card.  For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
140
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
141
    description:
142
      'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.'
143
  },
144
  {
145
    id: 6,
146
    type: 'Atlas',
147
    path: '/models/model18cls/model.json',
148
    modelName: '\u{1FA93} Subcortical + GWM (Low Mem, Faster)',
149
    colormapPath: './models/model18cls/colormap.json',
150
    preModelId: null, // model run first e.g.  Brain_Extraction  { null, 1, 2, ..  }
151
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
152
    isBatchOverlapEnable: false, // create extra overlap batches for inference
153
    numOverlapBatches: 200, // Number of extra overlap batches for inference
154
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
155
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
156
    cropPadding: 0, // Padding size add to cropped brain
157
    autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
158
    enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
159
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
160
    enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer
161
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
162
    warning:
163
      "This model may need dedicated graphics card.  For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
164
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
165
    description:
166
      'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.'
167
  },
168
  {
169
    id: 7,
170
    type: 'Atlas',
171
    path: '/models/model30chan18cls/model.json',
172
    modelName: '\u{1F52A}\u{1FA93} Subcortical + GWM (Failsafe, Less Acc)',
173
    colormapPath: './models/model30chan18cls/colormap.json',
174
    preModelId: 1, // model run first e.g.  Brain_Extraction  { null, 1, 2, ..  }
175
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
176
    isBatchOverlapEnable: false, // create extra overlap batches for inference
177
    numOverlapBatches: 200, // Number of extra overlap batches for inference
178
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
179
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
180
    cropPadding: 0, // Padding size add to cropped brain
181
    autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
182
    enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
183
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
184
    enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
185
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
186
    warning:
187
      "This model may need dedicated graphics card.  For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
188
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
189
    description:
190
      'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is not a robust model, it may work on low data quality, including varying saturation, and even clinical scans. It may work also on infant brains, but your mileage may vary.'
191
  },
192
  {
193
    id: 8,
194
    type: 'Atlas',
195
    path: '/models/model30chan50cls/model.json',
196
    modelName: '\u{1F52A} Aparc+Aseg 50 (High Mem, Fast)',
197
    colormapPath: './models/model30chan50cls/colormap.json',
198
    preModelId: 1, // Model run first e.g.  crop the brain  { null, 1, 2, ..  }
199
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
200
    isBatchOverlapEnable: false, // create extra overlap batches for inference
201
    numOverlapBatches: 200, // Number of extra overlap batches for inference
202
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
203
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
204
    cropPadding: 0, // Padding size add to cropped brain
205
    autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
206
    enableQuantileNorm: true, // Some models needs Quantile Normaliztion.
207
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
208
    enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
209
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
210
    warning:
211
      "This model may need dedicated graphics card.  For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
212
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
213
    description:
214
      'This is a 50-class model, that segments the brain into the Aparc+Aseg Freesurfer Atlas but one where cortical homologues are merged into a single class.'
215
  },
216
  {
217
    id: 9,
218
    type: 'Atlas',
219
    path: '/models/model30chan50cls/model.json',
220
    modelName: '\u{1F52A} Aparc+Aseg 50 (Low Mem, Slow)',
221
    colormapPath: './models/model30chan50cls/colormap.json',
222
    preModelId: 1, // Model run first e.g.  crop the brain  { null, 1, 2, ..  }
223
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
224
    isBatchOverlapEnable: false, // create extra overlap batches for inference
225
    numOverlapBatches: 200, // Number of extra overlap batches for inference
226
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
227
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
228
    cropPadding: 0, // Padding size add to cropped brain
229
    autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
230
    enableQuantileNorm: true, // Some models needs Quantile Normaliztion.
231
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
232
    enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last laye
233
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
234
    warning:
235
      "This model may need dedicated graphics card.  For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
236
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
237
    description:
238
      'This is a 50-class model, that segments the brain into the Aparc+Aseg Freesurfer Atlas but one where cortical homologues are merged into a single class. The model use sequential convolution for inference to overcome browser memory limitations but leads to longer computation time.'
239
  },
240
  // './models/model5_gw_ae/colorLUT.json',
241
  {
242
    id: 10,
243
    type: 'Brain_Extraction',
244
    path: '/models/model5_gw_ae/model.json',
245
    modelName: '\u26A1 Extract the Brain (FAST)',
246
    preModelId: null, // Model run first e.g.  crop the brain  { null, 1, 2, ..  }
247
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
248
    isBatchOverlapEnable: false, // create extra overlap batches for inference
249
    numOverlapBatches: 0, // Number of extra overlap batches for inference
250
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
251
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
252
    cropPadding: 18, // Padding size add to cropped brain
253
    autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
254
    enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
255
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
256
    enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
257
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
258
    warning: null, // Warning message to show when select the model.
259
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
260
    description:
261
      'Extract the brain fast model operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than the failsafe version.'
262
  },
263
  {
264
    id: 11,
265
    type: 'Brain_Extraction',
266
    path: '/models/model11_gw_ae/model.json',
267
    modelName: '\u{1F52A} Extract the Brain (High Acc, Slow)',
268
    preModelId: null, // Model run first e.g.  crop the brain  { null, 1, 2, ..  }
269
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
270
    isBatchOverlapEnable: false, // create extra overlap batches for inference
271
    numOverlapBatches: 0, // Number of extra overlap batches for inference
272
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
273
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
274
    cropPadding: 0, // Padding size add to cropped brain
275
    autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
276
    enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
277
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
278
    enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer
279
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
280
    warning:
281
      "This model may need dedicated graphics card.  For more info please check with Browser Resources <i class='fa fa-cogs'></i>.",
282
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
283
    description:
284
      'Extract the brain high accuracy model operates on full T1 image in a single pass, but uses only 11 filters per layer. Can work on dedicated graphics cards. Still more accurate than the fast version.'
285
  },
286
  {
287
    id: 12,
288
    type: 'Brain_Masking',
289
    path: '/models/model5_gw_ae/model.json',
290
    modelName: '\u26A1 Brain Mask (FAST)',
291
    colormapPath: './models/model5_gw_ae/colormap.json',
292
    preModelId: null, // Model run first e.g.  crop the brain  { null, 1, 2, ..  }
293
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
294
    isBatchOverlapEnable: false, // create extra overlap batches for inference
295
    numOverlapBatches: 0, // Number of extra overlap batches for inference
296
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
297
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
298
    cropPadding: 17, // Padding size add to cropped brain
299
    autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
300
    enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
301
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
302
    enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
303
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
304
    warning: null, // Warning message to show when select the model.
305
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
306
    description:
307
      'This fast masking model operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than failsafe version.'
308
  },
309
  {
310
    id: 13,
311
    type: 'Brain_Masking',
312
    path: '/models/model11_gw_ae/model.json',
313
    modelName: '\u{1F52A} Brain Mask (High Acc, Low Mem)',
314
    preModelId: null, // Model run first e.g.  crop the brain  { null, 1, 2, ..  }
315
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
316
    isBatchOverlapEnable: false, // create extra overlap batches for inference
317
    numOverlapBatches: 0, // Number of extra overlap batches for inference
318
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
319
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
320
    cropPadding: 0, // Padding size add to cropped brain
321
    autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
322
    enableQuantileNorm: true, // Some models needs Quantile Normaliztion.
323
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
324
    enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer
325
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
326
    warning:
327
      "This model may need dedicated graphics card.  For more info please check with Browser Resources <i class='fa fa-cogs'></i>.",
328
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
329
    description:
330
      'This masking model operates on full T1 image in a single pass, but uses 11 filters per layer. Can work on dedicated graphics cards. Still more accurate than fast version.'
331
  },
332
  {
333
    id: 14,
334
    type: 'Atlas',
335
    path: '/models/model21_104class/model.json',
336
    modelName: '\u{1F52A} Aparc+Aseg 104 (High Mem, Fast)',
337
    colormapPath: './models/model21_104class/colormap.json',
338
    preModelId: 1, // model run first e.g.  Brain_Extraction  { null, 1, 2, ..  }
339
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
340
    isBatchOverlapEnable: false, // create extra overlap batches for inference
341
    numOverlapBatches: 200, // Number of extra overlap batches for inference
342
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
343
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
344
    cropPadding: 0, // Padding size add to cropped brain
345
    autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
346
    enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
347
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
348
    enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer
349
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
350
    warning:
351
      "This model may need dedicated graphics card.  For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
352
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
353
    description:
354
      'FreeSurfer aparc+aseg atlas 104 parcellate brain areas into 104 regions. It contains a combination of the Desikan-Killiany atlas for cortical area and also segmentation of subcortical regions.'
355
  },
356
  {
357
    id: 15,
358
    type: 'Atlas',
359
    path: '/models/model21_104class/model.json',
360
    modelName: '\u{1F52A} Aparc+Aseg 104 (Low Mem, Slow)',
361
    colormapPath: './models/model21_104class/colormap.json',
362
    preModelId: null, // model run first e.g.  Brain_Extraction  { null, 1, 2, ..  }
363
    preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output.
364
    isBatchOverlapEnable: false, // create extra overlap batches for inference
365
    numOverlapBatches: 200, // Number of extra overlap batches for inference
366
    enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched
367
    enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use.
368
    cropPadding: 0, // Padding size add to cropped brain
369
    autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain
370
    enableQuantileNorm: false, // Some models needs Quantile Normaliztion.
371
    filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas
372
    enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer
373
    textureSize: 0, // Requested Texture size for the model, if unknown can be 0.
374
    warning:
375
      "This model may need dedicated graphics card.  For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model.
376
    inferenceDelay: 100, // Delay in ms time while looping layers applying.
377
    description:
378
      'FreeSurfer aparc+aseg atlas 104 parcellate brain areas into 104 regions. It contains a combination of the Desikan-Killiany atlas for cortical area and also segmentation of subcortical regions. The model use sequential convolution for inference to overcome browser memory limitations but leads to longer computation time. '
379
  }
380
] // inferenceModelsList