|
a |
|
b/brainchop-parameters.js |
|
|
1 |
export {inferenceModelsList, brainChopOpts } |
|
|
2 |
|
|
|
3 |
const brainChopOpts = { |
|
|
4 |
// General settings for input shape [batchSize, batch_D, batch_H, batch_W, numOfChan] |
|
|
5 |
batchSize: 1, // How many batches are used during each inference iteration |
|
|
6 |
numOfChan: 1, // num of channel of the input shape |
|
|
7 |
isColorEnable: true, // If false, grey scale will enabled |
|
|
8 |
isAutoColors: true, // If false, manualColorsRange will be in use |
|
|
9 |
bgLabelValue: 0, // Semenatic Segmentation background label value |
|
|
10 |
drawBoundingVolume: false, // plot bounding volume used to crop the brain |
|
|
11 |
isGPU: true, //use WebGL/GPU (faster) or CPU (compatibility) |
|
|
12 |
isBrainCropMaskBased: true, // Check if brain masking will be used for cropping & optional show or brain tissue will be used |
|
|
13 |
showPhase1Output: false, // This will load to papaya the output of phase-1 (ie. brain mask or brain tissue) |
|
|
14 |
isPostProcessEnable: true, // If true 3D Connected Components filter will apply |
|
|
15 |
isContoursViewEnable: false, // If true 3D contours of the labeled regions will apply |
|
|
16 |
browserArrayBufferMaxZDim: 30, // This value depends on Memory available |
|
|
17 |
telemetryFlag: false, // Ethical and transparent collection of browser usage while adhering to security and privacy standards |
|
|
18 |
chartXaxisStepPercent: 10, // percent from total labels on Xaxis |
|
|
19 |
uiSampleName: 'BC_UI_Sample', // Sample name used by interface |
|
|
20 |
atlasSelectedColorTable: 'Fire' // Select from ["Hot-and-Cold", "Fire", "Grayscale", "Gold", "Spectrum"] |
|
|
21 |
} |
|
|
22 |
|
|
|
23 |
// Inference Models, the ids must start from 1 in sequence |
|
|
24 |
const inferenceModelsList = [ |
|
|
25 |
{ |
|
|
26 |
id: 1, |
|
|
27 |
type: 'Segmentation', |
|
|
28 |
path: '/models/model5_gw_ae/model.json', |
|
|
29 |
modelName: '\u26A1 Tissue GWM (light)', |
|
|
30 |
colormapPath: './models/model5_gw_ae/colormap3.json', |
|
|
31 |
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } |
|
|
32 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
33 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
34 |
numOverlapBatches: 0, // Number of extra overlap batches for inference |
|
|
35 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
36 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
37 |
cropPadding: 18, // Padding size add to cropped brain |
|
|
38 |
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
39 |
enableQuantileNorm: false, // Some models needs Quantile Normaliztion. |
|
|
40 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
41 |
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
42 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
43 |
warning: null, // Warning message to show when select the model. |
|
|
44 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
45 |
description: |
|
|
46 |
'Gray and white matter segmentation model. Operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than the subvolume model.' |
|
|
47 |
}, |
|
|
48 |
{ |
|
|
49 |
id: 2, |
|
|
50 |
type: 'Segmentation', |
|
|
51 |
path: '/models/model20chan3cls/model.json', |
|
|
52 |
modelName: '\u{1F52A} Tissue GWM (High Acc)', |
|
|
53 |
colormapPath: './models/model20chan3cls/colormap.json', |
|
|
54 |
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } |
|
|
55 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
56 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
57 |
numOverlapBatches: 0, // Number of extra overlap batches for inference |
|
|
58 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
59 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
60 |
cropPadding: 0, // Padding size add to cropped brain |
|
|
61 |
autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
62 |
enableQuantileNorm: true, // Some models needs Quantile Normaliztion. |
|
|
63 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
64 |
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
65 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
66 |
warning: |
|
|
67 |
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", |
|
|
68 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
69 |
description: |
|
|
70 |
'Gray and white matter segmentation model. Operates on full T1 image in a single pass but needs a dedicated graphics card to operate. Provides the best accuracy with hard cropping for better speed' |
|
|
71 |
}, |
|
|
72 |
{ |
|
|
73 |
id: 3, |
|
|
74 |
type: 'Segmentation', |
|
|
75 |
path: '/models/model20chan3cls/model.json', |
|
|
76 |
modelName: '\u{1F52A} Tissue GWM (High Acc, Low Mem)', |
|
|
77 |
colormapPath: './models/model20chan3cls/colormap.json', |
|
|
78 |
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } |
|
|
79 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
80 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
81 |
numOverlapBatches: 0, // Number of extra overlap batches for inference |
|
|
82 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
83 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
84 |
cropPadding: 0, // Padding size add to cropped brain |
|
|
85 |
autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
86 |
enableQuantileNorm: true, // Some models needs Quantile Normaliztion. |
|
|
87 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
88 |
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
89 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
90 |
warning: |
|
|
91 |
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", |
|
|
92 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
93 |
description: |
|
|
94 |
'Gray and white matter segmentation model. Operates on full T1 image in a single pass but needs a dedicated graphics card to operate. Provides high accuracy and fit low memory available but slower' |
|
|
95 |
}, |
|
|
96 |
{ |
|
|
97 |
id: 4, |
|
|
98 |
type: 'Atlas', |
|
|
99 |
path: '/models/model30chan18cls/model.json', |
|
|
100 |
modelName: '\u{1FA93} Subcortical + GWM (High Mem, Fast)', |
|
|
101 |
colormapPath: './models/model30chan18cls/colormap.json', |
|
|
102 |
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } |
|
|
103 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
104 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
105 |
numOverlapBatches: 200, // Number of extra overlap batches for inference |
|
|
106 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
107 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
108 |
cropPadding: 0, // Padding size add to cropped brain |
|
|
109 |
autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
110 |
enableQuantileNorm: false, // Some models needs Quantile Normaliztion. |
|
|
111 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
112 |
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
113 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
114 |
warning: |
|
|
115 |
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model. |
|
|
116 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
117 |
description: |
|
|
118 |
'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.' |
|
|
119 |
}, |
|
|
120 |
{ |
|
|
121 |
id: 5, |
|
|
122 |
type: 'Atlas', |
|
|
123 |
path: '/models/model30chan18cls/model.json', |
|
|
124 |
modelName: '\u{1FA93} Subcortical + GWM (Low Mem, Slow)', |
|
|
125 |
colormapPath: './models/model30chan18cls/colormap.json', |
|
|
126 |
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } |
|
|
127 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
128 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
129 |
numOverlapBatches: 200, // Number of extra overlap batches for inference |
|
|
130 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
131 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
132 |
cropPadding: 0, // Padding size add to cropped brain |
|
|
133 |
autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
134 |
enableQuantileNorm: false, // Some models needs Quantile Normaliztion. |
|
|
135 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
136 |
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
137 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
138 |
warning: |
|
|
139 |
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model. |
|
|
140 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
141 |
description: |
|
|
142 |
'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.' |
|
|
143 |
}, |
|
|
144 |
{ |
|
|
145 |
id: 6, |
|
|
146 |
type: 'Atlas', |
|
|
147 |
path: '/models/model18cls/model.json', |
|
|
148 |
modelName: '\u{1FA93} Subcortical + GWM (Low Mem, Faster)', |
|
|
149 |
colormapPath: './models/model18cls/colormap.json', |
|
|
150 |
preModelId: null, // model run first e.g. Brain_Extraction { null, 1, 2, .. } |
|
|
151 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
152 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
153 |
numOverlapBatches: 200, // Number of extra overlap batches for inference |
|
|
154 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
155 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
156 |
cropPadding: 0, // Padding size add to cropped brain |
|
|
157 |
autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
158 |
enableQuantileNorm: false, // Some models needs Quantile Normaliztion. |
|
|
159 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
160 |
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
161 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
162 |
warning: |
|
|
163 |
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model. |
|
|
164 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
165 |
description: |
|
|
166 |
'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.' |
|
|
167 |
}, |
|
|
168 |
{ |
|
|
169 |
id: 7, |
|
|
170 |
type: 'Atlas', |
|
|
171 |
path: '/models/model30chan18cls/model.json', |
|
|
172 |
modelName: '\u{1F52A}\u{1FA93} Subcortical + GWM (Failsafe, Less Acc)', |
|
|
173 |
colormapPath: './models/model30chan18cls/colormap.json', |
|
|
174 |
preModelId: 1, // model run first e.g. Brain_Extraction { null, 1, 2, .. } |
|
|
175 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
176 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
177 |
numOverlapBatches: 200, // Number of extra overlap batches for inference |
|
|
178 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
179 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
180 |
cropPadding: 0, // Padding size add to cropped brain |
|
|
181 |
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
182 |
enableQuantileNorm: false, // Some models needs Quantile Normaliztion. |
|
|
183 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
184 |
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
185 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
186 |
warning: |
|
|
187 |
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model. |
|
|
188 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
189 |
description: |
|
|
190 |
'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is not a robust model, it may work on low data quality, including varying saturation, and even clinical scans. It may work also on infant brains, but your mileage may vary.' |
|
|
191 |
}, |
|
|
192 |
{ |
|
|
193 |
id: 8, |
|
|
194 |
type: 'Atlas', |
|
|
195 |
path: '/models/model30chan50cls/model.json', |
|
|
196 |
modelName: '\u{1F52A} Aparc+Aseg 50 (High Mem, Fast)', |
|
|
197 |
colormapPath: './models/model30chan50cls/colormap.json', |
|
|
198 |
preModelId: 1, // Model run first e.g. crop the brain { null, 1, 2, .. } |
|
|
199 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
200 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
201 |
numOverlapBatches: 200, // Number of extra overlap batches for inference |
|
|
202 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
203 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
204 |
cropPadding: 0, // Padding size add to cropped brain |
|
|
205 |
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
206 |
enableQuantileNorm: true, // Some models needs Quantile Normaliztion. |
|
|
207 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
208 |
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
209 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
210 |
warning: |
|
|
211 |
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model. |
|
|
212 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
213 |
description: |
|
|
214 |
'This is a 50-class model, that segments the brain into the Aparc+Aseg Freesurfer Atlas but one where cortical homologues are merged into a single class.' |
|
|
215 |
}, |
|
|
216 |
{ |
|
|
217 |
id: 9, |
|
|
218 |
type: 'Atlas', |
|
|
219 |
path: '/models/model30chan50cls/model.json', |
|
|
220 |
modelName: '\u{1F52A} Aparc+Aseg 50 (Low Mem, Slow)', |
|
|
221 |
colormapPath: './models/model30chan50cls/colormap.json', |
|
|
222 |
preModelId: 1, // Model run first e.g. crop the brain { null, 1, 2, .. } |
|
|
223 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
224 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
225 |
numOverlapBatches: 200, // Number of extra overlap batches for inference |
|
|
226 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
227 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
228 |
cropPadding: 0, // Padding size add to cropped brain |
|
|
229 |
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
230 |
enableQuantileNorm: true, // Some models needs Quantile Normaliztion. |
|
|
231 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
232 |
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last laye |
|
|
233 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
234 |
warning: |
|
|
235 |
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model. |
|
|
236 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
237 |
description: |
|
|
238 |
'This is a 50-class model, that segments the brain into the Aparc+Aseg Freesurfer Atlas but one where cortical homologues are merged into a single class. The model use sequential convolution for inference to overcome browser memory limitations but leads to longer computation time.' |
|
|
239 |
}, |
|
|
240 |
// './models/model5_gw_ae/colorLUT.json', |
|
|
241 |
{ |
|
|
242 |
id: 10, |
|
|
243 |
type: 'Brain_Extraction', |
|
|
244 |
path: '/models/model5_gw_ae/model.json', |
|
|
245 |
modelName: '\u26A1 Extract the Brain (FAST)', |
|
|
246 |
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } |
|
|
247 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
248 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
249 |
numOverlapBatches: 0, // Number of extra overlap batches for inference |
|
|
250 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
251 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
252 |
cropPadding: 18, // Padding size add to cropped brain |
|
|
253 |
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
254 |
enableQuantileNorm: false, // Some models needs Quantile Normaliztion. |
|
|
255 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
256 |
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
257 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
258 |
warning: null, // Warning message to show when select the model. |
|
|
259 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
260 |
description: |
|
|
261 |
'Extract the brain fast model operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than the failsafe version.' |
|
|
262 |
}, |
|
|
263 |
{ |
|
|
264 |
id: 11, |
|
|
265 |
type: 'Brain_Extraction', |
|
|
266 |
path: '/models/model11_gw_ae/model.json', |
|
|
267 |
modelName: '\u{1F52A} Extract the Brain (High Acc, Slow)', |
|
|
268 |
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } |
|
|
269 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
270 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
271 |
numOverlapBatches: 0, // Number of extra overlap batches for inference |
|
|
272 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
273 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
274 |
cropPadding: 0, // Padding size add to cropped brain |
|
|
275 |
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
276 |
enableQuantileNorm: false, // Some models needs Quantile Normaliztion. |
|
|
277 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
278 |
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
279 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
280 |
warning: |
|
|
281 |
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", |
|
|
282 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
283 |
description: |
|
|
284 |
'Extract the brain high accuracy model operates on full T1 image in a single pass, but uses only 11 filters per layer. Can work on dedicated graphics cards. Still more accurate than the fast version.' |
|
|
285 |
}, |
|
|
286 |
{ |
|
|
287 |
id: 12, |
|
|
288 |
type: 'Brain_Masking', |
|
|
289 |
path: '/models/model5_gw_ae/model.json', |
|
|
290 |
modelName: '\u26A1 Brain Mask (FAST)', |
|
|
291 |
colormapPath: './models/model5_gw_ae/colormap.json', |
|
|
292 |
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } |
|
|
293 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
294 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
295 |
numOverlapBatches: 0, // Number of extra overlap batches for inference |
|
|
296 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
297 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
298 |
cropPadding: 17, // Padding size add to cropped brain |
|
|
299 |
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
300 |
enableQuantileNorm: false, // Some models needs Quantile Normaliztion. |
|
|
301 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
302 |
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
303 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
304 |
warning: null, // Warning message to show when select the model. |
|
|
305 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
306 |
description: |
|
|
307 |
'This fast masking model operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than failsafe version.' |
|
|
308 |
}, |
|
|
309 |
{ |
|
|
310 |
id: 13, |
|
|
311 |
type: 'Brain_Masking', |
|
|
312 |
path: '/models/model11_gw_ae/model.json', |
|
|
313 |
modelName: '\u{1F52A} Brain Mask (High Acc, Low Mem)', |
|
|
314 |
preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } |
|
|
315 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
316 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
317 |
numOverlapBatches: 0, // Number of extra overlap batches for inference |
|
|
318 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
319 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
320 |
cropPadding: 0, // Padding size add to cropped brain |
|
|
321 |
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
322 |
enableQuantileNorm: true, // Some models needs Quantile Normaliztion. |
|
|
323 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
324 |
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
325 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
326 |
warning: |
|
|
327 |
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", |
|
|
328 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
329 |
description: |
|
|
330 |
'This masking model operates on full T1 image in a single pass, but uses 11 filters per layer. Can work on dedicated graphics cards. Still more accurate than fast version.' |
|
|
331 |
}, |
|
|
332 |
{ |
|
|
333 |
id: 14, |
|
|
334 |
type: 'Atlas', |
|
|
335 |
path: '/models/model21_104class/model.json', |
|
|
336 |
modelName: '\u{1F52A} Aparc+Aseg 104 (High Mem, Fast)', |
|
|
337 |
colormapPath: './models/model21_104class/colormap.json', |
|
|
338 |
preModelId: 1, // model run first e.g. Brain_Extraction { null, 1, 2, .. } |
|
|
339 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
340 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
341 |
numOverlapBatches: 200, // Number of extra overlap batches for inference |
|
|
342 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
343 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
344 |
cropPadding: 0, // Padding size add to cropped brain |
|
|
345 |
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
346 |
enableQuantileNorm: false, // Some models needs Quantile Normaliztion. |
|
|
347 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
348 |
enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
349 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
350 |
warning: |
|
|
351 |
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model. |
|
|
352 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
353 |
description: |
|
|
354 |
'FreeSurfer aparc+aseg atlas 104 parcellate brain areas into 104 regions. It contains a combination of the Desikan-Killiany atlas for cortical area and also segmentation of subcortical regions.' |
|
|
355 |
}, |
|
|
356 |
{ |
|
|
357 |
id: 15, |
|
|
358 |
type: 'Atlas', |
|
|
359 |
path: '/models/model21_104class/model.json', |
|
|
360 |
modelName: '\u{1F52A} Aparc+Aseg 104 (Low Mem, Slow)', |
|
|
361 |
colormapPath: './models/model21_104class/colormap.json', |
|
|
362 |
preModelId: null, // model run first e.g. Brain_Extraction { null, 1, 2, .. } |
|
|
363 |
preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. |
|
|
364 |
isBatchOverlapEnable: false, // create extra overlap batches for inference |
|
|
365 |
numOverlapBatches: 200, // Number of extra overlap batches for inference |
|
|
366 |
enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched |
|
|
367 |
enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. |
|
|
368 |
cropPadding: 0, // Padding size add to cropped brain |
|
|
369 |
autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain |
|
|
370 |
enableQuantileNorm: false, // Some models needs Quantile Normaliztion. |
|
|
371 |
filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas |
|
|
372 |
enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer |
|
|
373 |
textureSize: 0, // Requested Texture size for the model, if unknown can be 0. |
|
|
374 |
warning: |
|
|
375 |
"This model may need dedicated graphics card. For more info please check with Browser Resources <i class='fa fa-cogs'></i>.", // Warning message to show when select the model. |
|
|
376 |
inferenceDelay: 100, // Delay in ms time while looping layers applying. |
|
|
377 |
description: |
|
|
378 |
'FreeSurfer aparc+aseg atlas 104 parcellate brain areas into 104 regions. It contains a combination of the Desikan-Killiany atlas for cortical area and also segmentation of subcortical regions. The model use sequential convolution for inference to overcome browser memory limitations but leads to longer computation time. ' |
|
|
379 |
} |
|
|
380 |
] // inferenceModelsList |