[26e314]: / data_brain_parcellation.py

Download this file

349 lines (277 with data), 13.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
__author__ = 'adeb'
import os
import glob
import time
import numpy as np
import nibabel as nib
import theano
import matplotlib.cm as cm
from matplotlib import pyplot as plt
from spynet.utils.utilities import distrib_balls_in_bins
from spynet.utils.multiprocess import parmap
from spynet.data.dataset import Dataset
from spynet.data.utils_3d.pick_patch import *
from spynet.data.utils_3d.pick_voxel import *
from spynet.data.utils_3d.pick_target import *
from spynet.utils.utilities import tile_raster_images
import PIL
class DataGeneratorBrain():
"""
Attributes:
pick_vx(function): Function to pick voxels
pick_patch(function): Function to pick patches
pick_tg(function): Function to pick patches
files: List of pairs (mri_file, label_file)
atlases: List of pairs (mri array, label array)
n_files (int): Number of files
n_out_features (int): Number of output classes in the datasets
"""
# See Miccai rules
ignored_labels = range(1,4)+range(5,11)+range(12,23)+range(24,30)+[33,34]+[42,43]+[53,54]+range(63,69)+[70,74]+\
range(80,100)+[110,111]+[126,127]+[130,131]+[158,159]+[188,189]
true_labels = [4, 11, 23, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57,
58, 59, 60, 61, 62, 69, 71, 72, 73, 75, 76, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112,
113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 128, 129, 132, 133, 134, 135, 136,
137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
179, 180, 181, 182, 183, 184, 185, 186, 187, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200,
201, 202, 203, 204, 205, 206, 207]
def __init__(self):
self.pick_vx = None
self.pick_features = None
self.pick_tg = None
self.files = None
self.n_files = None
self.atlases = []
self.ls_region_centroids = []
self.n_out_features = None
def init_from_config(self, config):
self.pick_vx = create_pick_voxel(config)
self.pick_features = create_pick_features(config)
self.pick_tg = create_pick_target(config)
self.files = list_miccai_files(**config.general["source_kwargs"])
self.__init_common()
def init_from(self, files, pick_vx, pick_patch, pick_tg):
self.pick_vx = pick_vx
self.pick_features = pick_patch
self.pick_tg = pick_tg
self.files = files
self.__init_common()
def __init_common(self):
self.n_files = len(self.files)
self.ls_region_centroids = [None]*self.n_files
print " preprocess the atlases ..."
for i, file_names in enumerate(self.files):
mri_file, lab_file = file_names
print " " + mri_file
# nib.nifti1.FLOAT32_EPS_3 = -1e-6
mri = nib.load(mri_file).get_data().squeeze()
mri = mri.astype(np.float32, copy=False)
lab = nib.load(lab_file).get_data().squeeze()
lab = lab.astype(np.int16, copy=False)
mri, lab = crop_brain_and_pad(mri, lab, self.pick_features.required_pad)
self.scale_atlas(mri, lab)
# plt.imshow(mri[100,:,:], cmap = cm.Greys_r)
# plt.savefig("salut1.png")
affine = nib.load(mri_file).get_affine()
self.atlases.append((mri, lab, affine))
# Compute the centroids
if self.pick_features.has_instance_of(PickCentroidDistances):
region_centroids = RegionCentroids(134)
temp = lab.nonzero()
vxs = np.asarray(temp).T
region_centroids.update_barycentres(vxs, lab[temp])
self.ls_region_centroids[i] = region_centroids
# Number of classes
self.n_out_features = 135
def scale_atlas(self, mri, label):
only_brain = mri[label.nonzero()]
scalar_mean = np.mean(only_brain)
scalar_std = np.std(only_brain)
mri -= scalar_mean
mri /= scalar_std
def generate_single_atlas(self, atlas_id, n_points, region_centroid, batch_size, verbose=False):
print(" file {} \n".format(self.files[atlas_id]))
mri, lab, _ = self.atlases[atlas_id]
vx_batches_generator = self.pick_vx.pick(n_points, lab, verbose=verbose, batch_size=batch_size)
for vx_batch in vx_batches_generator:
patch = self.pick_features.pick(vx_batch, mri, lab, region_centroid)[0]
# patch_lab = self.pick_features.pick(vx_batch, lab, lab, self.ls_region_centroids[atlas_id])[0]
# image1_1 = PIL.Image.fromarray(tile_raster_images(X=patch[0:10],
# img_shape=(29, 29), tile_shape=(1, 10),
# tile_spacing=(1, 1)))
# image1_1.save("patches_2D_mri_1.png")
# patch_lab = self.pick_features.pick(vx_batch, lab, lab, self.ls_region_centroids[atlas_id])[0]
# image1_1 = PIL.Image.fromarray(tile_raster_images(X=patch[10:20],
# img_shape=(29, 29), tile_shape=(1, 10),
# tile_spacing=(1, 1)))
# image1_1.save("patches_2D_mri_2.png")
# temp_arr = tile_raster_images(X=patch_lab[0:10],
# img_shape=(29, 29), tile_shape=(1, 10),
# tile_spacing=(1, 1))
# image2_1 = PIL.Image.fromarray(np.uint8(cm.spectral(temp_arr)*255))
# image2_1.save("patches_2D_seg_1.png")
# temp_arr = tile_raster_images(X=patch_lab[10:20],
# img_shape=(29, 29), tile_shape=(1, 10),
# tile_spacing=(1, 1))
# image2_1 = PIL.Image.fromarray(np.uint8(cm.spectral(temp_arr)*255))
# image2_1.save("patches_2D_seg_2.png")
tg = self.pick_tg.pick(vx_batch, self.n_out_features, mri, lab)
yield vx_batch, patch, tg
def generate_parallel(self, batch_size):
print "Generate data ..."
### Initialization of the containers
# Compute the number of voxels to extract from each atlas
voxels_per_atlas = distrib_balls_in_bins(batch_size, self.n_files)
### Fill in the containers
# Function that will be run in parallel
def generate_from_one_brain(atlas_id):
n_points = voxels_per_atlas[atlas_id]
# Large batch_size so it can not be reached. We want to store everything, so we don't split
vx, patch, tg = \
next(self.generate_single_atlas(atlas_id, n_points,
self.ls_region_centroids[atlas_id], batch_size=1000000))
return vx, patch, tg, atlas_id
# Generate the patches in parallel
if self.n_files == 1: # This special case is necessary to avoid a bug on the server
res_all = map(generate_from_one_brain, range(self.n_files))
else:
res_all = parmap(generate_from_one_brain, range(self.n_files))
# Initialize the containers
vx = np.zeros((batch_size, 3), dtype=int)
patch = np.zeros((batch_size, self.pick_features.n_features), dtype=theano.config.floatX)
tg = np.zeros((batch_size, self.n_out_features), dtype=theano.config.floatX)
file_id = np.zeros((batch_size, 1), dtype=int)
# Aggregate the data
idx1 = 0
for res in res_all:
idx2 = idx1 + res[0].shape[0]
vx[idx1:idx2], patch[idx1:idx2], tg[idx1:idx2], file_id[idx1:idx2] = res
idx1 = idx2
return vx, patch, tg, file_id
def list_miccai_files(**kwargs):
"""
List the the pairs (mri_file_name, label_file_name) of the miccai data.
"""
mode = kwargs["mode"]
path = kwargs["path"]
label_path = path + "label/"
mri_files = glob.glob(path + "mri/*.nii")
if mode == "folder":
idx_files = xrange(len(mri_files))
elif mode == "idx_files":
idx_files = kwargs["idx_files"]
else:
raise Exception("Error to list the MICCAI files, the mode does not exist.")
return [(mri_files[i], label_path + os.path.splitext(os.path.basename(mri_files[i]))[0] + "_glm.nii")
for i in idx_files]
def check_img_limits(img):
"""
Find the boundaries of the non-zero region of the image
"""
def check_limit_one_side(fun, iterations):
for i in iterations:
if np.any(fun(i)):
return i
return iterations[-1]
lim = np.zeros((3, 2), dtype=int)
dims = img.shape
f0 = lambda i: img[i, :, :]
f1 = lambda i: img[:, i, :]
f2 = lambda i: img[:, :, i]
f = (f0, f1, f2)
for j in xrange(3):
lim[j, 0] = check_limit_one_side(f[j], xrange(dims[j]))
lim[j, 1] = check_limit_one_side(f[j], reversed(xrange(dims[j])))
return lim
def crop_brain_and_pad(mri, lab, pad):
"""
Extract the brain from an mri image
"""
lim = check_img_limits(lab)
lim[:, 0] -= pad
lim[:, 1] += pad
dim_orig = np.array(mri.shape)
pad_inf = np.zeros((3,), dtype=int)
too_low = lim[:, 0] < 0
pad_inf[too_low] = -lim[too_low, 0]
lim[too_low, 0] = 0
pad_sup = np.zeros((3,), dtype=int)
too_high = lim[:, 1] > dim_orig
pad_sup[too_high] = lim[too_high, 1] - dim_orig[too_high]
lim[too_high, 1] = dim_orig[too_high]
lim0 = slice(lim[0, 0], lim[0, 1])
lim1 = slice(lim[1, 0], lim[1, 1])
lim2 = slice(lim[2, 0], lim[2, 1])
mri = mri[lim0, lim1, lim2]
lab = lab[lim0, lim1, lim2]
mri = np.lib.pad(mri, zip(pad_inf, pad_sup), 'constant', constant_values=0)
lab = np.lib.pad(lab, zip(pad_inf, pad_sup), 'constant', constant_values=0)
return mri, lab
class DatasetBrainParcellation(Dataset):
"""
Specialized dataset class for the brain parcellation data.
Attributes:
vx(array n_data x 3): Array containing the coordinates x, y, z of the voxels
file_ids(array n_data x 3): Array containing the file id of the datapoint
"""
def __init__(self):
Dataset.__init__(self)
# Initialize the additional containers
self.vx = None
self.file_ids = None
def populate_from_config(self, config):
data_generator = DataGeneratorBrain()
data_generator.init_from_config(config)
vx, inputs, outputs, file_ids = data_generator.generate_parallel(config.general["n_data"])
self.populate(inputs, outputs, vx, file_ids)
self.shuffle_data()
def populate(self, inputs, outputs, vx, file_ids):
self.inputs = inputs
self.outputs = outputs
self.vx = vx
self.file_ids = file_ids
def shuffle_data_virtual(self, perm):
self.vx = self.vx[perm]
self.file_ids = self.file_ids[perm]
def write_virtual(self, h5file):
h5file.create_dataset("voxels", data=self.vx, dtype='f')
h5file.create_dataset("file_id", data=self.file_ids, dtype='f')
def read_virtual(self, h5file):
self.vx = h5file["voxels"].value
self.file_ids = h5file["file_id"].value
def duplicate_datapoints_slice_virtual(self, ds, slice_idx):
ds.vx = self.vx[slice_idx]
ds.file_ids = self.file_ids
pass
class RegionCentroids():
def __init__(self, n_regions):
self.n_regions = n_regions
self.barycentres = np.zeros((n_regions, 3))
def update_barycentres(self, vxs, regions):
self.barycentres = np.zeros((self.n_regions, 3))
for i in xrange(self.n_regions):
idxs = regions == i+1
if vxs[idxs].size == 0:
continue
self.barycentres[i] = np.mean(vxs[idxs], axis=0)
# For zero values (with no regions present), set them to the mean
self.barycentres[self.barycentres == 0] = self.barycentres[self.barycentres != 0].mean()
def compute_scaled_distances(self, vx):
distances = np.linalg.norm(self.barycentres - vx, axis=1)
return distances
def generate_and_save(config):
file_path = config.general["file_path"]
ds = DatasetBrainParcellation()
ds.populate_from_config(config)
ds.write(file_path)
# for ignored_label in self.ignored_labels:
# lab[lab == ignored_label] = 0
# for idx, label in enumerate(self.true_labels):
# lab[lab==label] = idx+1
#
# aa = nib.Nifti1Image(mri, nib.load(mri_file).get_affine())
# nib.save(aa, mri_file)
#
# bb = nib.Nifti1Image(lab, nib.load(lab_file).get_affine())
# nib.save(bb, lab_file)