|
a |
|
b/matlab_to_numpy.py |
|
|
1 |
""" |
|
|
2 |
Read all the Matlab files in the 'data' directory and export 3 numpy arrays: |
|
|
3 |
- labels.npy |
|
|
4 |
- images.npy |
|
|
5 |
- masks.npy |
|
|
6 |
|
|
|
7 |
Usage: python matlab_to_numpy.py ~/brain_tumor_dataset |
|
|
8 |
""" |
|
|
9 |
|
|
|
10 |
import os |
|
|
11 |
import argparse |
|
|
12 |
import sys |
|
|
13 |
import numpy as np |
|
|
14 |
import hdf5storage |
|
|
15 |
import cv2 |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
class NoDataFound(Exception): |
|
|
19 |
pass |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
def dir_path(path): |
|
|
23 |
"""Check the path and the existence of a data directory""" |
|
|
24 |
# replace '\' in path for Windows users |
|
|
25 |
path = path.replace('\\', '/') |
|
|
26 |
data_path = os.path.join(path, 'data').replace('\\', '/') |
|
|
27 |
|
|
|
28 |
if os.path.isdir(data_path): |
|
|
29 |
return path |
|
|
30 |
elif os.path.isdir(path): |
|
|
31 |
raise NoDataFound('Could not find a "data" folder inside directory. {} does not exist.' |
|
|
32 |
.format(data_path)) |
|
|
33 |
else: |
|
|
34 |
raise NotADirectoryError(path) |
|
|
35 |
|
|
|
36 |
|
|
|
37 |
parser = argparse.ArgumentParser() |
|
|
38 |
parser.add_argument('path', help='path to the brain_tumor_dataset directory', type=dir_path) |
|
|
39 |
parser.add_argument('--image-dimension', '-d', default=512, help='dimension of the image', type=int) |
|
|
40 |
args = parser.parse_args() |
|
|
41 |
|
|
|
42 |
labels = [] |
|
|
43 |
images = [] |
|
|
44 |
masks = [] |
|
|
45 |
|
|
|
46 |
data_dir = os.path.join(args.path, 'data').replace('\\', '/') |
|
|
47 |
files = os.listdir(data_dir) |
|
|
48 |
for i, file in enumerate(files, start=1): |
|
|
49 |
if i % 10 == 0: |
|
|
50 |
# print the percentage of images loaded |
|
|
51 |
sys.stdout.write('\r[{}/{}] images loaded: {:.1f} %' |
|
|
52 |
.format(i, len(files), i / float(len(files)) * 100)) |
|
|
53 |
sys.stdout.flush() |
|
|
54 |
|
|
|
55 |
# load matlab file with hdf5storage as scipy.io.loadmat does not support v7.3 files |
|
|
56 |
mat_file = hdf5storage.loadmat(os.path.join(data_dir, file))['cjdata'][0] |
|
|
57 |
|
|
|
58 |
# resize image and mask to a unique size |
|
|
59 |
image = cv2.resize(mat_file[2], dsize=(args.image_dimension, args.image_dimension), |
|
|
60 |
interpolation=cv2.INTER_CUBIC) |
|
|
61 |
mask = cv2.resize(mat_file[4].astype('uint8'), dsize=(args.image_dimension, args.image_dimension), |
|
|
62 |
interpolation=cv2.INTER_CUBIC) |
|
|
63 |
|
|
|
64 |
labels.append(int(mat_file[0])) |
|
|
65 |
images.append(image) |
|
|
66 |
masks.append(mask.astype(bool)) |
|
|
67 |
|
|
|
68 |
sys.stdout.write('\r[{}/{}] images loaded: {:.1f} %' |
|
|
69 |
.format(i, len(files), i / float(len(files)) * 100)) |
|
|
70 |
sys.stdout.flush() |
|
|
71 |
|
|
|
72 |
labels = np.array(labels) |
|
|
73 |
images = np.array(images) |
|
|
74 |
masks = np.array(masks) |
|
|
75 |
|
|
|
76 |
print('\nlabels:', labels.shape) |
|
|
77 |
print('images:', images.shape) |
|
|
78 |
print('masks:', masks.shape) |
|
|
79 |
|
|
|
80 |
np.save(os.path.join(args.path, 'labels.npy'), labels) |
|
|
81 |
np.save(os.path.join(args.path, 'images.npy'), images) |
|
|
82 |
np.save(os.path.join(args.path, 'masks.npy'), masks) |
|
|
83 |
|
|
|
84 |
print('labels.npy, images.npy, masks.npy saved in', args.path) |