|
a |
|
b/ndv/model.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": { |
|
|
6 |
"colab_type": "text", |
|
|
7 |
"id": "b6KgSfpahUZ1" |
|
|
8 |
}, |
|
|
9 |
"source": [ |
|
|
10 |
"# Setup" |
|
|
11 |
] |
|
|
12 |
}, |
|
|
13 |
{ |
|
|
14 |
"cell_type": "code", |
|
|
15 |
"execution_count": 1, |
|
|
16 |
"metadata": { |
|
|
17 |
"colab": {}, |
|
|
18 |
"colab_type": "code", |
|
|
19 |
"id": "G75A7ey4hUZ3" |
|
|
20 |
}, |
|
|
21 |
"outputs": [], |
|
|
22 |
"source": [ |
|
|
23 |
"import torch\n", |
|
|
24 |
"from fastai.callbacks import *\n", |
|
|
25 |
"from fastai.vision import *" |
|
|
26 |
] |
|
|
27 |
}, |
|
|
28 |
{ |
|
|
29 |
"cell_type": "markdown", |
|
|
30 |
"metadata": { |
|
|
31 |
"colab_type": "text", |
|
|
32 |
"id": "C77ffh0whUZ7" |
|
|
33 |
}, |
|
|
34 |
"source": [ |
|
|
35 |
"## GPU " |
|
|
36 |
] |
|
|
37 |
}, |
|
|
38 |
{ |
|
|
39 |
"cell_type": "code", |
|
|
40 |
"execution_count": 0, |
|
|
41 |
"metadata": { |
|
|
42 |
"colab": { |
|
|
43 |
"base_uri": "https://localhost:8080/", |
|
|
44 |
"height": 34 |
|
|
45 |
}, |
|
|
46 |
"colab_type": "code", |
|
|
47 |
"id": "syfiMzschUZ8", |
|
|
48 |
"outputId": "a555f3d9-91cb-43e1-8302-a037fbb5efe9" |
|
|
49 |
}, |
|
|
50 |
"outputs": [ |
|
|
51 |
{ |
|
|
52 |
"data": { |
|
|
53 |
"text/plain": [ |
|
|
54 |
"True" |
|
|
55 |
] |
|
|
56 |
}, |
|
|
57 |
"execution_count": 2, |
|
|
58 |
"metadata": { |
|
|
59 |
"tags": [] |
|
|
60 |
}, |
|
|
61 |
"output_type": "execute_result" |
|
|
62 |
} |
|
|
63 |
], |
|
|
64 |
"source": [ |
|
|
65 |
"# Check GPU availablity\n", |
|
|
66 |
"torch.cuda.is_available()" |
|
|
67 |
] |
|
|
68 |
}, |
|
|
69 |
{ |
|
|
70 |
"cell_type": "code", |
|
|
71 |
"execution_count": 0, |
|
|
72 |
"metadata": { |
|
|
73 |
"colab": { |
|
|
74 |
"base_uri": "https://localhost:8080/", |
|
|
75 |
"height": 34 |
|
|
76 |
}, |
|
|
77 |
"colab_type": "code", |
|
|
78 |
"id": "TOznfYKmhUaB", |
|
|
79 |
"outputId": "6b060a7f-72ae-43c1-c0b0-e521b770ffad" |
|
|
80 |
}, |
|
|
81 |
"outputs": [ |
|
|
82 |
{ |
|
|
83 |
"data": { |
|
|
84 |
"text/plain": [ |
|
|
85 |
"1" |
|
|
86 |
] |
|
|
87 |
}, |
|
|
88 |
"execution_count": 4, |
|
|
89 |
"metadata": { |
|
|
90 |
"tags": [] |
|
|
91 |
}, |
|
|
92 |
"output_type": "execute_result" |
|
|
93 |
} |
|
|
94 |
], |
|
|
95 |
"source": [ |
|
|
96 |
"# Check mounted GPU devices\n", |
|
|
97 |
"torch.cuda.device_count()" |
|
|
98 |
] |
|
|
99 |
}, |
|
|
100 |
{ |
|
|
101 |
"cell_type": "code", |
|
|
102 |
"execution_count": 0, |
|
|
103 |
"metadata": { |
|
|
104 |
"colab": { |
|
|
105 |
"base_uri": "https://localhost:8080/", |
|
|
106 |
"height": 34 |
|
|
107 |
}, |
|
|
108 |
"colab_type": "code", |
|
|
109 |
"id": "BfqqvsjvhUaF", |
|
|
110 |
"outputId": "5afac64a-4654-41df-ed6d-6bc968cc8ef7" |
|
|
111 |
}, |
|
|
112 |
"outputs": [ |
|
|
113 |
{ |
|
|
114 |
"data": { |
|
|
115 |
"text/plain": [ |
|
|
116 |
"0" |
|
|
117 |
] |
|
|
118 |
}, |
|
|
119 |
"execution_count": 16, |
|
|
120 |
"metadata": { |
|
|
121 |
"tags": [] |
|
|
122 |
}, |
|
|
123 |
"output_type": "execute_result" |
|
|
124 |
} |
|
|
125 |
], |
|
|
126 |
"source": [ |
|
|
127 |
"# Current device you're using\n", |
|
|
128 |
"# * 0-indexed *\n", |
|
|
129 |
"torch.cuda.current_device()" |
|
|
130 |
] |
|
|
131 |
}, |
|
|
132 |
{ |
|
|
133 |
"cell_type": "code", |
|
|
134 |
"execution_count": 2, |
|
|
135 |
"metadata": { |
|
|
136 |
"code_folding": [], |
|
|
137 |
"colab": { |
|
|
138 |
"base_uri": "https://localhost:8080/", |
|
|
139 |
"height": 289 |
|
|
140 |
}, |
|
|
141 |
"colab_type": "code", |
|
|
142 |
"id": "hIcrVEJWhUaK", |
|
|
143 |
"outputId": "52eb889d-49ef-433b-9528-0ac9b514dc76" |
|
|
144 |
}, |
|
|
145 |
"outputs": [ |
|
|
146 |
{ |
|
|
147 |
"name": "stdout", |
|
|
148 |
"output_type": "stream", |
|
|
149 |
"text": [ |
|
|
150 |
"Wed Jun 10 22:31:28 2020 \n", |
|
|
151 |
"+-----------------------------------------------------------------------------+\n", |
|
|
152 |
"| NVIDIA-SMI 418.67 Driver Version: 418.67 CUDA Version: 10.1 |\n", |
|
|
153 |
"|-------------------------------+----------------------+----------------------+\n", |
|
|
154 |
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", |
|
|
155 |
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", |
|
|
156 |
"|===============================+======================+======================|\n", |
|
|
157 |
"| 0 Tesla V100-PCIE... On | 00000000:00:06.0 Off | 0 |\n", |
|
|
158 |
"| N/A 36C P0 41W / 250W | 4990MiB / 32480MiB | 0% Default |\n", |
|
|
159 |
"+-------------------------------+----------------------+----------------------+\n", |
|
|
160 |
"| 1 Tesla V100-PCIE... On | 00000000:00:07.0 Off | 0 |\n", |
|
|
161 |
"| N/A 37C P0 43W / 250W | 936MiB / 32480MiB | 0% Default |\n", |
|
|
162 |
"+-------------------------------+----------------------+----------------------+\n", |
|
|
163 |
"| 2 Tesla V100-PCIE... On | 00000000:00:08.0 Off | 0 |\n", |
|
|
164 |
"| N/A 34C P0 39W / 250W | 936MiB / 32480MiB | 0% Default |\n", |
|
|
165 |
"+-------------------------------+----------------------+----------------------+\n", |
|
|
166 |
" \n", |
|
|
167 |
"+-----------------------------------------------------------------------------+\n", |
|
|
168 |
"| Processes: GPU Memory |\n", |
|
|
169 |
"| GPU PID Type Process name Usage |\n", |
|
|
170 |
"|=============================================================================|\n", |
|
|
171 |
"| 0 5744 C ...u/anaconda3/envs/pytorch_p36/bin/python 941MiB |\n", |
|
|
172 |
"| 0 8881 C ...u/anaconda3/envs/pytorch_p36/bin/python 941MiB |\n", |
|
|
173 |
"+-----------------------------------------------------------------------------+\n" |
|
|
174 |
] |
|
|
175 |
} |
|
|
176 |
], |
|
|
177 |
"source": [ |
|
|
178 |
"# Check workloads of your GPU(s)\n", |
|
|
179 |
"!nvidia-smi" |
|
|
180 |
] |
|
|
181 |
}, |
|
|
182 |
{ |
|
|
183 |
"cell_type": "code", |
|
|
184 |
"execution_count": 4, |
|
|
185 |
"metadata": { |
|
|
186 |
"colab": {}, |
|
|
187 |
"colab_type": "code", |
|
|
188 |
"id": "2BmajeAXhUaO" |
|
|
189 |
}, |
|
|
190 |
"outputs": [], |
|
|
191 |
"source": [ |
|
|
192 |
"# Reset your current device (if necessary)\n", |
|
|
193 |
"torch.cuda.set_device(1)" |
|
|
194 |
] |
|
|
195 |
}, |
|
|
196 |
{ |
|
|
197 |
"cell_type": "code", |
|
|
198 |
"execution_count": 3, |
|
|
199 |
"metadata": { |
|
|
200 |
"colab": {}, |
|
|
201 |
"colab_type": "code", |
|
|
202 |
"id": "tOVolw1UhUaS", |
|
|
203 |
"outputId": "eab8d203-31ee-41b2-822c-3a0abb058fe5" |
|
|
204 |
}, |
|
|
205 |
"outputs": [ |
|
|
206 |
{ |
|
|
207 |
"data": { |
|
|
208 |
"text/plain": [ |
|
|
209 |
"1" |
|
|
210 |
] |
|
|
211 |
}, |
|
|
212 |
"execution_count": 3, |
|
|
213 |
"metadata": {}, |
|
|
214 |
"output_type": "execute_result" |
|
|
215 |
} |
|
|
216 |
], |
|
|
217 |
"source": [ |
|
|
218 |
"# Check change's been made\n", |
|
|
219 |
"torch.cuda.current_device()\n" |
|
|
220 |
] |
|
|
221 |
}, |
|
|
222 |
{ |
|
|
223 |
"cell_type": "code", |
|
|
224 |
"execution_count": 5, |
|
|
225 |
"metadata": { |
|
|
226 |
"colab": { |
|
|
227 |
"base_uri": "https://localhost:8080/", |
|
|
228 |
"height": 34 |
|
|
229 |
}, |
|
|
230 |
"colab_type": "code", |
|
|
231 |
"id": "wXALsotzhUaY", |
|
|
232 |
"outputId": "c2118aaa-bf6c-4d23-db4b-bfc0667ed5a2" |
|
|
233 |
}, |
|
|
234 |
"outputs": [ |
|
|
235 |
{ |
|
|
236 |
"data": { |
|
|
237 |
"text/plain": [ |
|
|
238 |
"'Tesla V100-PCIE-32GB'" |
|
|
239 |
] |
|
|
240 |
}, |
|
|
241 |
"execution_count": 5, |
|
|
242 |
"metadata": {}, |
|
|
243 |
"output_type": "execute_result" |
|
|
244 |
} |
|
|
245 |
], |
|
|
246 |
"source": [ |
|
|
247 |
"# Check name of your device\n", |
|
|
248 |
"torch.cuda.get_device_name()" |
|
|
249 |
] |
|
|
250 |
}, |
|
|
251 |
{ |
|
|
252 |
"cell_type": "markdown", |
|
|
253 |
"metadata": { |
|
|
254 |
"colab_type": "text", |
|
|
255 |
"id": "CSmixVUShUac" |
|
|
256 |
}, |
|
|
257 |
"source": [ |
|
|
258 |
"# Model Prototyping" |
|
|
259 |
] |
|
|
260 |
}, |
|
|
261 |
{ |
|
|
262 |
"cell_type": "markdown", |
|
|
263 |
"metadata": { |
|
|
264 |
"colab_type": "text", |
|
|
265 |
"heading_collapsed": true, |
|
|
266 |
"id": "btBiurUPxx7t" |
|
|
267 |
}, |
|
|
268 |
"source": [ |
|
|
269 |
"## Helpers " |
|
|
270 |
] |
|
|
271 |
}, |
|
|
272 |
{ |
|
|
273 |
"cell_type": "code", |
|
|
274 |
"execution_count": 5, |
|
|
275 |
"metadata": { |
|
|
276 |
"code_folding": [ |
|
|
277 |
0 |
|
|
278 |
], |
|
|
279 |
"colab": {}, |
|
|
280 |
"colab_type": "code", |
|
|
281 |
"hidden": true, |
|
|
282 |
"id": "jIljYlKohUad" |
|
|
283 |
}, |
|
|
284 |
"outputs": [], |
|
|
285 |
"source": [ |
|
|
286 |
"def conv_block(c_in, c_out, ks, num_groups=None, **conv_kwargs):\n", |
|
|
287 |
" \"A sequence of modules composed of Group Norm, ReLU and Conv3d in order\"\n", |
|
|
288 |
" if not num_groups : num_groups = int(c_in/2) if c_in%2 == 0 else None\n", |
|
|
289 |
" return nn.Sequential(nn.GroupNorm(num_groups, c_in),\n", |
|
|
290 |
" nn.ReLU(),\n", |
|
|
291 |
" nn.Conv3d(c_in, c_out, ks, **conv_kwargs))" |
|
|
292 |
] |
|
|
293 |
}, |
|
|
294 |
{ |
|
|
295 |
"cell_type": "code", |
|
|
296 |
"execution_count": 6, |
|
|
297 |
"metadata": { |
|
|
298 |
"code_folding": [ |
|
|
299 |
0 |
|
|
300 |
], |
|
|
301 |
"colab": {}, |
|
|
302 |
"colab_type": "code", |
|
|
303 |
"hidden": true, |
|
|
304 |
"id": "fLbUaZT7hUag" |
|
|
305 |
}, |
|
|
306 |
"outputs": [], |
|
|
307 |
"source": [ |
|
|
308 |
"def reslike_block(nf, num_groups=None, bottle_neck:bool=False, **conv_kwargs):\n", |
|
|
309 |
" \"A ResNet-like block with the GroupNorm normalization providing optional bottle-neck functionality\"\n", |
|
|
310 |
" nf_inner = nf / 2 if bottle_neck else nf\n", |
|
|
311 |
" return SequentialEx(conv_block(num_groups=num_groups, c_in=nf, c_out=nf_inner, ks=3, stride=1, padding=1, **conv_kwargs),\n", |
|
|
312 |
" conv_block(num_groups=num_groups, c_in=nf_inner, c_out=nf, ks=3, stride=1, padding=1, **conv_kwargs),\n", |
|
|
313 |
" MergeLayer())" |
|
|
314 |
] |
|
|
315 |
}, |
|
|
316 |
{ |
|
|
317 |
"cell_type": "code", |
|
|
318 |
"execution_count": 7, |
|
|
319 |
"metadata": { |
|
|
320 |
"code_folding": [ |
|
|
321 |
0 |
|
|
322 |
], |
|
|
323 |
"colab": {}, |
|
|
324 |
"colab_type": "code", |
|
|
325 |
"hidden": true, |
|
|
326 |
"id": "BKNJoGdsgbk2" |
|
|
327 |
}, |
|
|
328 |
"outputs": [], |
|
|
329 |
"source": [ |
|
|
330 |
"def upsize(c_in, c_out, ks=1, scale=2):\n", |
|
|
331 |
" \"Reduce the number of features by 2 using Conv with kernel size 1x1x1 and double the spatial dimension using 3D trilinear upsampling\"\n", |
|
|
332 |
" return nn.Sequential(nn.Conv3d(c_in, c_out, ks),\n", |
|
|
333 |
" nn.Upsample(scale_factor=scale, mode='trilinear'))" |
|
|
334 |
] |
|
|
335 |
}, |
|
|
336 |
{ |
|
|
337 |
"cell_type": "code", |
|
|
338 |
"execution_count": 8, |
|
|
339 |
"metadata": { |
|
|
340 |
"code_folding": [ |
|
|
341 |
0 |
|
|
342 |
], |
|
|
343 |
"colab": {}, |
|
|
344 |
"colab_type": "code", |
|
|
345 |
"hidden": true, |
|
|
346 |
"id": "6CjiBTnT8LFF" |
|
|
347 |
}, |
|
|
348 |
"outputs": [], |
|
|
349 |
"source": [ |
|
|
350 |
"def hook_debug(module, input, output):\n", |
|
|
351 |
" \"\"\"\n", |
|
|
352 |
" Print out what's been hooked usually for debugging purpose\n", |
|
|
353 |
" ----------------------------------------------------------\n", |
|
|
354 |
" Example:\n", |
|
|
355 |
" Hooks(ms, hook_debug, is_forward=True, detach=False)\n", |
|
|
356 |
" \n", |
|
|
357 |
" \"\"\"\n", |
|
|
358 |
" print('Hooking ' + module.__class__.__name__)\n", |
|
|
359 |
" print('output size:', output.data.size())\n", |
|
|
360 |
" return output" |
|
|
361 |
] |
|
|
362 |
}, |
|
|
363 |
{ |
|
|
364 |
"cell_type": "markdown", |
|
|
365 |
"metadata": { |
|
|
366 |
"colab_type": "text", |
|
|
367 |
"id": "MY131WWbx3nN" |
|
|
368 |
}, |
|
|
369 |
"source": [ |
|
|
370 |
"## Encoder Part" |
|
|
371 |
] |
|
|
372 |
}, |
|
|
373 |
{ |
|
|
374 |
"cell_type": "code", |
|
|
375 |
"execution_count": 9, |
|
|
376 |
"metadata": { |
|
|
377 |
"code_folding": [ |
|
|
378 |
0 |
|
|
379 |
], |
|
|
380 |
"colab": {}, |
|
|
381 |
"colab_type": "code", |
|
|
382 |
"id": "f_8ynHTavdvL" |
|
|
383 |
}, |
|
|
384 |
"outputs": [], |
|
|
385 |
"source": [ |
|
|
386 |
"class Encoder(nn.Module):\n", |
|
|
387 |
" \"Encoder part\"\n", |
|
|
388 |
" def __init__(self):\n", |
|
|
389 |
" super().__init__()\n", |
|
|
390 |
" self.conv1 = nn.Conv3d(4, 32, 3, stride=1, padding=1) \n", |
|
|
391 |
" self.res_block1 = reslike_block(32, num_groups=8)\n", |
|
|
392 |
" self.conv_block1 = conv_block(32, 64, 3, num_groups=8, stride=2, padding=1)\n", |
|
|
393 |
" self.res_block2 = reslike_block(64, num_groups=8)\n", |
|
|
394 |
" self.conv_block2 = conv_block(64, 64, 3, num_groups=8, stride=1, padding=1)\n", |
|
|
395 |
" self.res_block3 = reslike_block(64, num_groups=8)\n", |
|
|
396 |
" self.conv_block3 = conv_block(64, 128, 3, num_groups=8, stride=2, padding=1)\n", |
|
|
397 |
" self.res_block4 = reslike_block(128, num_groups=8)\n", |
|
|
398 |
" self.conv_block4 = conv_block(128, 128, 3, num_groups=8, stride=1, padding=1)\n", |
|
|
399 |
" self.res_block5 = reslike_block(128, num_groups=8)\n", |
|
|
400 |
" self.conv_block5 = conv_block(128, 256, 3, num_groups=8, stride=2, padding=1)\n", |
|
|
401 |
" self.res_block6 = reslike_block(256, num_groups=8)\n", |
|
|
402 |
" self.conv_block6 = conv_block(256, 256, 3, num_groups=8, stride=1, padding=1)\n", |
|
|
403 |
" self.res_block7 = reslike_block(256, num_groups=8)\n", |
|
|
404 |
" self.conv_block7 = conv_block(256, 256, 3, num_groups=8, stride=1, padding=1)\n", |
|
|
405 |
" self.res_block8 = reslike_block(256, num_groups=8)\n", |
|
|
406 |
" self.conv_block8 = conv_block(256, 256, 3, num_groups=8, stride=1, padding=1)\n", |
|
|
407 |
" self.res_block9 = reslike_block(256, num_groups=8)\n", |
|
|
408 |
" \n", |
|
|
409 |
" def forward(self, x):\n", |
|
|
410 |
" x = self.conv1(x) # Output size: (1, 32, 160, 192, 128)\n", |
|
|
411 |
" x = self.res_block1(x) # Output size: (1, 32, 160, 192, 128)\n", |
|
|
412 |
" x = self.conv_block1(x) # Output size: (1, 64, 80, 96, 64)\n", |
|
|
413 |
" x = self.res_block2(x) # Output size: (1, 64, 80, 96, 64)\n", |
|
|
414 |
" x = self.conv_block2(x) # Output size: (1, 64, 80, 96, 64)\n", |
|
|
415 |
" x = self.res_block3(x) # Output size: (1, 64, 80, 96, 64)\n", |
|
|
416 |
" x = self.conv_block3(x) # Output size: (1, 128, 40, 48, 32)\n", |
|
|
417 |
" x = self.res_block4(x) # Output size: (1, 128, 40, 48, 32)\n", |
|
|
418 |
" x = self.conv_block4(x) # Output size: (1, 128, 40, 48, 32)\n", |
|
|
419 |
" x = self.res_block5(x) # Output size: (1, 128, 40, 48, 32)\n", |
|
|
420 |
" x = self.conv_block5(x) # Output size: (1, 256, 20, 24, 16)\n", |
|
|
421 |
" x = self.res_block6(x) # Output size: (1, 256, 20, 24, 16)\n", |
|
|
422 |
" x = self.conv_block6(x) # Output size: (1, 256, 20, 24, 16)\n", |
|
|
423 |
" x = self.res_block7(x) # Output size: (1, 256, 20, 24, 16)\n", |
|
|
424 |
" x = self.conv_block7(x) # Output size: (1, 256, 20, 24, 16)\n", |
|
|
425 |
" x = self.res_block8(x) # Output size: (1, 256, 20, 24, 16)\n", |
|
|
426 |
" x = self.conv_block8(x) # Output size: (1, 256, 20, 24, 16)\n", |
|
|
427 |
" x = self.res_block9(x) # Output size: (1, 256, 20, 24, 16)\n", |
|
|
428 |
" return x" |
|
|
429 |
] |
|
|
430 |
}, |
|
|
431 |
{ |
|
|
432 |
"cell_type": "code", |
|
|
433 |
"execution_count": 23, |
|
|
434 |
"metadata": { |
|
|
435 |
"code_folding": [ |
|
|
436 |
0 |
|
|
437 |
], |
|
|
438 |
"colab": {}, |
|
|
439 |
"colab_type": "code", |
|
|
440 |
"id": "bgPmjWCq6n1F" |
|
|
441 |
}, |
|
|
442 |
"outputs": [], |
|
|
443 |
"source": [ |
|
|
444 |
"########## Sanity-check ############\n", |
|
|
445 |
"# input = torch.randn(1, 4, 160, 192, 128)\n", |
|
|
446 |
"# input = input.cuda()\n", |
|
|
447 |
"# encoder = Encoder()\n", |
|
|
448 |
"# encoder.cuda()\n", |
|
|
449 |
"# ms = [encoder.res_block1, encoder.res_block3, encoder.res_block5]\n", |
|
|
450 |
"# hooks = Hooks(ms, hook_debug, is_forward=True, detach=False)\n", |
|
|
451 |
"# output = encoder(input)" |
|
|
452 |
] |
|
|
453 |
}, |
|
|
454 |
{ |
|
|
455 |
"cell_type": "markdown", |
|
|
456 |
"metadata": { |
|
|
457 |
"colab_type": "text", |
|
|
458 |
"id": "BKmlf1qY74Fx" |
|
|
459 |
}, |
|
|
460 |
"source": [ |
|
|
461 |
"## Decoder Part" |
|
|
462 |
] |
|
|
463 |
}, |
|
|
464 |
{ |
|
|
465 |
"cell_type": "code", |
|
|
466 |
"execution_count": 10, |
|
|
467 |
"metadata": { |
|
|
468 |
"code_folding": [ |
|
|
469 |
0 |
|
|
470 |
], |
|
|
471 |
"colab": {}, |
|
|
472 |
"colab_type": "code", |
|
|
473 |
"id": "p9jCdQAeBTch" |
|
|
474 |
}, |
|
|
475 |
"outputs": [], |
|
|
476 |
"source": [ |
|
|
477 |
"class Decoder(nn.Module):\n", |
|
|
478 |
" \"Decoder Part\"\n", |
|
|
479 |
" def __init__(self):\n", |
|
|
480 |
" super().__init__()\n", |
|
|
481 |
" self.upsize1 = upsize(256, 128)\n", |
|
|
482 |
" self.reslike1 = reslike_block(128, num_groups=8)\n", |
|
|
483 |
" self.upsize2 = upsize(128, 64)\n", |
|
|
484 |
" self.reslike2 = reslike_block(64, num_groups=8)\n", |
|
|
485 |
" self.upsize3 = upsize(64, 32)\n", |
|
|
486 |
" self.reslike3 = reslike_block(32, num_groups=8)\n", |
|
|
487 |
" self.conv1 = nn.Conv3d(32, 3, 1) \n", |
|
|
488 |
" self.sigmoid1 = torch.nn.Sigmoid()\n", |
|
|
489 |
"\n", |
|
|
490 |
" def forward(self, x):\n", |
|
|
491 |
" x = self.upsize1(x) # Output size: (1, 128, 40, 48, 32)\n", |
|
|
492 |
" x = x + hooks.stored[2] # Output size: (1, 128, 40, 48, 32)\n", |
|
|
493 |
" x = self.reslike1(x) # Output size: (1, 128, 40, 48, 32)\n", |
|
|
494 |
" x = self.upsize2(x) # Output size: (1, 64, 80, 96, 64)\n", |
|
|
495 |
" x = x + hooks.stored[1] # Output size: (1, 64, 80, 96, 64)\n", |
|
|
496 |
" x = self.reslike2(x) # Output size: (1, 64, 80, 96, 64)\n", |
|
|
497 |
" x = self.upsize3(x) # Output size: (1, 32, 160, 192, 128)\n", |
|
|
498 |
" x = x + hooks.stored[0] # Output size: (1, 32, 160, 192, 128)\n", |
|
|
499 |
" x = self.reslike3(x) # Output size: (1, 32, 160, 192, 128)\n", |
|
|
500 |
" x = self.conv1(x) # Output size: (1, 3, 160, 192, 128)\n", |
|
|
501 |
" x = self.sigmoid1(x) # Output size: (1, 3, 160, 192, 128)\n", |
|
|
502 |
" return x" |
|
|
503 |
] |
|
|
504 |
}, |
|
|
505 |
{ |
|
|
506 |
"cell_type": "code", |
|
|
507 |
"execution_count": 0, |
|
|
508 |
"metadata": { |
|
|
509 |
"code_folding": [ |
|
|
510 |
0 |
|
|
511 |
], |
|
|
512 |
"colab": {}, |
|
|
513 |
"colab_type": "code", |
|
|
514 |
"id": "54LhlCx7hOt6" |
|
|
515 |
}, |
|
|
516 |
"outputs": [], |
|
|
517 |
"source": [ |
|
|
518 |
"############ Sanity-check ############\n", |
|
|
519 |
"# input = torch.randn(1, 256, 20, 24, 16)\n", |
|
|
520 |
"# input = input.cuda()\n", |
|
|
521 |
"# decoder = Decoder()\n", |
|
|
522 |
"# decoder.cuda()\n", |
|
|
523 |
"# output = decoder(input)\n", |
|
|
524 |
"# output.shape" |
|
|
525 |
] |
|
|
526 |
}, |
|
|
527 |
{ |
|
|
528 |
"cell_type": "markdown", |
|
|
529 |
"metadata": { |
|
|
530 |
"colab_type": "text", |
|
|
531 |
"id": "Sq9kLEFbx8sF" |
|
|
532 |
}, |
|
|
533 |
"source": [ |
|
|
534 |
"## VAE Part" |
|
|
535 |
] |
|
|
536 |
}, |
|
|
537 |
{ |
|
|
538 |
"cell_type": "code", |
|
|
539 |
"execution_count": 11, |
|
|
540 |
"metadata": { |
|
|
541 |
"code_folding": [], |
|
|
542 |
"colab": {}, |
|
|
543 |
"colab_type": "code", |
|
|
544 |
"id": "KEpqknq3hUaq" |
|
|
545 |
}, |
|
|
546 |
"outputs": [], |
|
|
547 |
"source": [ |
|
|
548 |
"class VAEEncoder(nn.Module):\n", |
|
|
549 |
" \"Variational auto-encoder encoder part\"\n", |
|
|
550 |
" def __init__(self, latent_dim:int=128):\n", |
|
|
551 |
" super().__init__()\n", |
|
|
552 |
" self.latent_dim = latent_dim\n", |
|
|
553 |
" self.conv_block = conv_block(256, 16, 3, num_groups=8, stride=2, padding=1)\n", |
|
|
554 |
" self.linear1 = nn.Linear(60, 1)\n", |
|
|
555 |
" \n", |
|
|
556 |
" # Assumed latent variable's probability density function parameters\n", |
|
|
557 |
" self.z_mean = nn.Linear(256, latent_dim)\n", |
|
|
558 |
" self.z_log_var = nn.Linear(256, latent_dim)\n", |
|
|
559 |
" #TODO: It should work with or without GPU\n", |
|
|
560 |
" self.epsilon = torch.randn(1, latent_dim, device='cuda')\n", |
|
|
561 |
" \n", |
|
|
562 |
" def forward(self, x):\n", |
|
|
563 |
" x = self.conv_block(x) # Output size: (1, 16, 10, 12, 8) \n", |
|
|
564 |
" x = x.view(256, -1) # Output size: (256, 60) \n", |
|
|
565 |
" x = self.linear1(x) # Output size: (256, 1)\n", |
|
|
566 |
" x = x.view(1, 256) # Output size: (1, 256) \n", |
|
|
567 |
" z_mean = self.z_mean(x) # Output size: (1, 128)\n", |
|
|
568 |
" z_var = self.z_log_var(x).exp() # Output size: (1, 128) \n", |
|
|
569 |
" \n", |
|
|
570 |
" return z_mean + z_var * self.epsilon # Output size: (1, 128) " |
|
|
571 |
] |
|
|
572 |
}, |
|
|
573 |
{ |
|
|
574 |
"cell_type": "code", |
|
|
575 |
"execution_count": 11, |
|
|
576 |
"metadata": { |
|
|
577 |
"code_folding": [ |
|
|
578 |
0 |
|
|
579 |
], |
|
|
580 |
"colab": { |
|
|
581 |
"base_uri": "https://localhost:8080/", |
|
|
582 |
"height": 34 |
|
|
583 |
}, |
|
|
584 |
"colab_type": "code", |
|
|
585 |
"id": "ll26pBm9tj7-", |
|
|
586 |
"outputId": "f1e9300e-8e79-4c66-8d0e-6897ce6b7f80" |
|
|
587 |
}, |
|
|
588 |
"outputs": [], |
|
|
589 |
"source": [ |
|
|
590 |
"############ Sanity-check ############\n", |
|
|
591 |
"# input = torch.randn(1, 256, 20, 24, 16)\n", |
|
|
592 |
"# input = input.cuda()\n", |
|
|
593 |
"# vae_encoder = VAEEncoder(latent_dim=128)\n", |
|
|
594 |
"# vae_encoder.cuda()\n", |
|
|
595 |
"# output = vae_encoder(output)\n", |
|
|
596 |
"# output.shape" |
|
|
597 |
] |
|
|
598 |
}, |
|
|
599 |
{ |
|
|
600 |
"cell_type": "code", |
|
|
601 |
"execution_count": 12, |
|
|
602 |
"metadata": { |
|
|
603 |
"code_folding": [ |
|
|
604 |
0 |
|
|
605 |
], |
|
|
606 |
"colab": {}, |
|
|
607 |
"colab_type": "code", |
|
|
608 |
"id": "tl4tYTaXe1qw" |
|
|
609 |
}, |
|
|
610 |
"outputs": [], |
|
|
611 |
"source": [ |
|
|
612 |
"class VAEDecoder(nn.Module):\n", |
|
|
613 |
" \"Variational auto-encoder decoder part\"\n", |
|
|
614 |
" def __init__(self):\n", |
|
|
615 |
" super().__init__()\n", |
|
|
616 |
" self.linear1 = nn.Linear(128, 256*60)\n", |
|
|
617 |
" self.relu1 = nn.ReLU()\n", |
|
|
618 |
" self.upsize1 = upsize(16, 256)\n", |
|
|
619 |
" self.upsize2 = upsize(256, 128)\n", |
|
|
620 |
" self.reslike1 = reslike_block(128, num_groups=8)\n", |
|
|
621 |
" self.upsize3 = upsize(128, 64)\n", |
|
|
622 |
" self.reslike2 = reslike_block(64, num_groups=8)\n", |
|
|
623 |
" self.upsize4 = upsize(64, 32)\n", |
|
|
624 |
" self.reslike3 = reslike_block(32, num_groups=8)\n", |
|
|
625 |
" self.conv1 = nn.Conv3d(32, 4, 1)\n", |
|
|
626 |
" \n", |
|
|
627 |
" def forward(self, x):\n", |
|
|
628 |
" x = self.linear1(x) # Output size: (1, 256*60) \n", |
|
|
629 |
" x = self.relu1(x) # Output size: (1, 256*60)\n", |
|
|
630 |
" x = x.view(1, 16, 10, 12, 8) # Output size: (1, 16, 10, 12, 8)\n", |
|
|
631 |
" x = self.upsize1(x) # Output size: (1, 256, 20, 24, 16)\n", |
|
|
632 |
" x = self.upsize2(x) # Output size: (1, 128, 40, 48, 32)\n", |
|
|
633 |
" x = self.reslike1(x) # Output size: (1, 128, 40, 48, 32)\n", |
|
|
634 |
" x = self.upsize3(x) # Output size: (1, 64, 80, 96, 64)\n", |
|
|
635 |
" x = self.reslike2(x) # Output size: (1, 64, 80, 96, 64)\n", |
|
|
636 |
" x = self.upsize4(x) # Output size: (1, 32, 160, 192, 128)\n", |
|
|
637 |
" x = self.reslike3(x) # Output size: (1, 32, 160, 192, 128)\n", |
|
|
638 |
" x = self.conv1(x) # Output size: (1, 4, 160, 192, 128) \n", |
|
|
639 |
" return x" |
|
|
640 |
] |
|
|
641 |
}, |
|
|
642 |
{ |
|
|
643 |
"cell_type": "code", |
|
|
644 |
"execution_count": 0, |
|
|
645 |
"metadata": { |
|
|
646 |
"code_folding": [ |
|
|
647 |
0 |
|
|
648 |
], |
|
|
649 |
"colab": {}, |
|
|
650 |
"colab_type": "code", |
|
|
651 |
"id": "RrusoNDpzPOk" |
|
|
652 |
}, |
|
|
653 |
"outputs": [], |
|
|
654 |
"source": [ |
|
|
655 |
"############ Sanity-check ############\n", |
|
|
656 |
"# input = torch.randn(1, 128)\n", |
|
|
657 |
"# input = input.cuda()\n", |
|
|
658 |
"# vae_decoder = VAEDecoder()\n", |
|
|
659 |
"# vae_decoder.cuda()\n", |
|
|
660 |
"# vae_decoder(output).shape" |
|
|
661 |
] |
|
|
662 |
}, |
|
|
663 |
{ |
|
|
664 |
"cell_type": "markdown", |
|
|
665 |
"metadata": { |
|
|
666 |
"colab_type": "text", |
|
|
667 |
"id": "dtLzCKAOEn6c" |
|
|
668 |
}, |
|
|
669 |
"source": [ |
|
|
670 |
"## AutoUNet" |
|
|
671 |
] |
|
|
672 |
}, |
|
|
673 |
{ |
|
|
674 |
"cell_type": "code", |
|
|
675 |
"execution_count": 13, |
|
|
676 |
"metadata": { |
|
|
677 |
"code_folding": [], |
|
|
678 |
"colab": {}, |
|
|
679 |
"colab_type": "code", |
|
|
680 |
"id": "9lhVuR2QExrp" |
|
|
681 |
}, |
|
|
682 |
"outputs": [], |
|
|
683 |
"source": [ |
|
|
684 |
"class AutoUNet(nn.Module):\n", |
|
|
685 |
" \"3D U-Net using autoencoder regularization\"\n", |
|
|
686 |
" def __init__(self):\n", |
|
|
687 |
" super().__init__()\n", |
|
|
688 |
" self.encoder = Encoder()\n", |
|
|
689 |
" self.decoder = Decoder()\n", |
|
|
690 |
" self.vencoder = VAEEncoder(latent_dim=128)\n", |
|
|
691 |
" self.vdecoder = VAEDecoder()\n", |
|
|
692 |
"\n", |
|
|
693 |
" def forward(self, input):\n", |
|
|
694 |
" interm_res = self.encoder(input)\n", |
|
|
695 |
" top_res = self.decoder(interm_res) # Output size: (1, 3, 160, 192, 128)\n", |
|
|
696 |
" bottom_res = self.vdecoder(self.vencoder(interm_res)) # Output size: (1, 4, 160, 192, 128)\n", |
|
|
697 |
" return top_res, bottom_res" |
|
|
698 |
] |
|
|
699 |
}, |
|
|
700 |
{ |
|
|
701 |
"cell_type": "code", |
|
|
702 |
"execution_count": null, |
|
|
703 |
"metadata": { |
|
|
704 |
"code_folding": [], |
|
|
705 |
"scrolled": true |
|
|
706 |
}, |
|
|
707 |
"outputs": [], |
|
|
708 |
"source": [ |
|
|
709 |
"############ Sanity-check ############\n", |
|
|
710 |
"input = torch.randn(1, 4, 160, 192, 128)\n", |
|
|
711 |
"input = input.cuda()\n", |
|
|
712 |
"model = AutoUNet()\n", |
|
|
713 |
"model.cuda()\n", |
|
|
714 |
"\n", |
|
|
715 |
"ms = [model.encoder.res_block1, \n", |
|
|
716 |
" model.encoder.res_block3, \n", |
|
|
717 |
" model.encoder.res_block5, \n", |
|
|
718 |
" model.vencoder.z_mean, \n", |
|
|
719 |
" model.vencoder.z_log_var]\n", |
|
|
720 |
"\n", |
|
|
721 |
"hooks = hook_outputs(ms, detach=False, grad=False) #check: overwrite for each iteration?\n", |
|
|
722 |
"#hooks = Hooks(ms, hook_debug, is_forward=True, detach=False)\n", |
|
|
723 |
"\n", |
|
|
724 |
"output = model(input)" |
|
|
725 |
] |
|
|
726 |
}, |
|
|
727 |
{ |
|
|
728 |
"cell_type": "markdown", |
|
|
729 |
"metadata": { |
|
|
730 |
"colab_type": "text", |
|
|
731 |
"id": "ZSPf7atqhOuG" |
|
|
732 |
}, |
|
|
733 |
"source": [ |
|
|
734 |
"## Custom Loss " |
|
|
735 |
] |
|
|
736 |
}, |
|
|
737 |
{ |
|
|
738 |
"cell_type": "code", |
|
|
739 |
"execution_count": null, |
|
|
740 |
"metadata": { |
|
|
741 |
"code_folding": [], |
|
|
742 |
"colab": { |
|
|
743 |
"base_uri": "https://localhost:8080/", |
|
|
744 |
"height": 85 |
|
|
745 |
}, |
|
|
746 |
"colab_type": "code", |
|
|
747 |
"id": "OQ4vfaR-L9Wz", |
|
|
748 |
"outputId": "cd5cb780-4027-4e12-e0de-07485713db38", |
|
|
749 |
"scrolled": false |
|
|
750 |
}, |
|
|
751 |
"outputs": [], |
|
|
752 |
"source": [ |
|
|
753 |
"# Set the global variables\n", |
|
|
754 |
"_, C, H, W, D = [input.shape[i] for i in range(len(input.shape))]\n", |
|
|
755 |
"c = output[0].shape[1]\n", |
|
|
756 |
"\n", |
|
|
757 |
"print(\"Channels:\", C)\n", |
|
|
758 |
"print(\"Height:\", H)\n", |
|
|
759 |
"print(\"Width:\", W)\n", |
|
|
760 |
"print(\"Depth:\", D)\n", |
|
|
761 |
"print(\"The Number Of Labels:\", c)" |
|
|
762 |
] |
|
|
763 |
}, |
|
|
764 |
{ |
|
|
765 |
"cell_type": "code", |
|
|
766 |
"execution_count": 0, |
|
|
767 |
"metadata": { |
|
|
768 |
"code_folding": [], |
|
|
769 |
"colab": {}, |
|
|
770 |
"colab_type": "code", |
|
|
771 |
"id": "j7cmXkIvhOuI" |
|
|
772 |
}, |
|
|
773 |
"outputs": [], |
|
|
774 |
"source": [ |
|
|
775 |
"class SoftDiceLoss(Module): \n", |
|
|
776 |
" \"Soft dice loss based on a measure of overlap between prediction and ground truth\"\n", |
|
|
777 |
" def __init__(self, epsilon=1e-6, c=c):\n", |
|
|
778 |
" super().__init__()\n", |
|
|
779 |
" self.epsilon = epsilon\n", |
|
|
780 |
" self.c = c\n", |
|
|
781 |
" \n", |
|
|
782 |
" def forward(self, x:Tensor, y:Tensor):\n", |
|
|
783 |
" intersection = 2 * ( (x*y).sum() )\n", |
|
|
784 |
" union = (x**2).sum() + (y**2).sum() \n", |
|
|
785 |
" return 1 - ( ( intersection / (union + self.epsilon) ) / self.c )" |
|
|
786 |
] |
|
|
787 |
}, |
|
|
788 |
{ |
|
|
789 |
"cell_type": "code", |
|
|
790 |
"execution_count": null, |
|
|
791 |
"metadata": { |
|
|
792 |
"code_folding": [ |
|
|
793 |
0 |
|
|
794 |
] |
|
|
795 |
}, |
|
|
796 |
"outputs": [], |
|
|
797 |
"source": [ |
|
|
798 |
"####### Sanity-check ############\n", |
|
|
799 |
"loss = " |
|
|
800 |
] |
|
|
801 |
}, |
|
|
802 |
{ |
|
|
803 |
"cell_type": "code", |
|
|
804 |
"execution_count": 16, |
|
|
805 |
"metadata": { |
|
|
806 |
"code_folding": [], |
|
|
807 |
"colab": {}, |
|
|
808 |
"colab_type": "code", |
|
|
809 |
"id": "kOjrJ44uhOuK" |
|
|
810 |
}, |
|
|
811 |
"outputs": [], |
|
|
812 |
"source": [ |
|
|
813 |
"class KLDivergence(Module): \n", |
|
|
814 |
" \"KL divergence between the estimated normal distribution and a prior distribution\"\n", |
|
|
815 |
" N = H * W * D #hyperparameter check\n", |
|
|
816 |
"\n", |
|
|
817 |
" def __init__(self):\n", |
|
|
818 |
" super().__init__()\n", |
|
|
819 |
" \n", |
|
|
820 |
" def forward(self, z_mean:Tensor, z_log_var:Tensor):\n", |
|
|
821 |
" z_var = z_log_var.exp()\n", |
|
|
822 |
" return (1/self.N) * ( (z_mean**2 + z_var**2 - z_log_var**2 - 1).sum() )" |
|
|
823 |
] |
|
|
824 |
}, |
|
|
825 |
{ |
|
|
826 |
"cell_type": "code", |
|
|
827 |
"execution_count": null, |
|
|
828 |
"metadata": { |
|
|
829 |
"code_folding": [] |
|
|
830 |
}, |
|
|
831 |
"outputs": [], |
|
|
832 |
"source": [ |
|
|
833 |
"####### Sanity-check ############\n", |
|
|
834 |
"loss2 = KLDivergence()(z_mean=hooks.stored[3], z_log_var=hooks.stored[4])\n", |
|
|
835 |
"print(loss2)\n", |
|
|
836 |
"loss2.backward()" |
|
|
837 |
] |
|
|
838 |
}, |
|
|
839 |
{ |
|
|
840 |
"cell_type": "code", |
|
|
841 |
"execution_count": 18, |
|
|
842 |
"metadata": { |
|
|
843 |
"code_folding": [ |
|
|
844 |
0 |
|
|
845 |
], |
|
|
846 |
"colab": {}, |
|
|
847 |
"colab_type": "code", |
|
|
848 |
"id": "HycYhLrohOuM" |
|
|
849 |
}, |
|
|
850 |
"outputs": [], |
|
|
851 |
"source": [ |
|
|
852 |
"class L2Loss(Module): \n", |
|
|
853 |
" \"Measuring the `Euclidian distance` between prediction and ground truh using `L2 Norm`\"\n", |
|
|
854 |
" def __init__(self):\n", |
|
|
855 |
" super().__init__()\n", |
|
|
856 |
" \n", |
|
|
857 |
" def forward(self, x:Tensor, y:Tensor):\n", |
|
|
858 |
" return ( (x - y)**2 ).sum() " |
|
|
859 |
] |
|
|
860 |
}, |
|
|
861 |
{ |
|
|
862 |
"cell_type": "code", |
|
|
863 |
"execution_count": null, |
|
|
864 |
"metadata": { |
|
|
865 |
"code_folding": [ |
|
|
866 |
0 |
|
|
867 |
] |
|
|
868 |
}, |
|
|
869 |
"outputs": [], |
|
|
870 |
"source": [ |
|
|
871 |
"####### Sanity-check ############\n", |
|
|
872 |
"loss3 = L2Loss()(bottom_res=output[1], orig=input)\n", |
|
|
873 |
"print(loss3)\n", |
|
|
874 |
"loss3.backward()" |
|
|
875 |
] |
|
|
876 |
}, |
|
|
877 |
{ |
|
|
878 |
"cell_type": "markdown", |
|
|
879 |
"metadata": { |
|
|
880 |
"colab_type": "text", |
|
|
881 |
"id": "MsP_HOw2_6Jd" |
|
|
882 |
}, |
|
|
883 |
"source": [ |
|
|
884 |
"## Optimizer" |
|
|
885 |
] |
|
|
886 |
}, |
|
|
887 |
{ |
|
|
888 |
"cell_type": "code", |
|
|
889 |
"execution_count": 0, |
|
|
890 |
"metadata": { |
|
|
891 |
"colab": {}, |
|
|
892 |
"colab_type": "code", |
|
|
893 |
"id": "XYaFQ6nQ_8O4" |
|
|
894 |
}, |
|
|
895 |
"outputs": [], |
|
|
896 |
"source": [ |
|
|
897 |
"optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)" |
|
|
898 |
] |
|
|
899 |
}, |
|
|
900 |
{ |
|
|
901 |
"cell_type": "markdown", |
|
|
902 |
"metadata": { |
|
|
903 |
"colab_type": "text", |
|
|
904 |
"id": "GPK9Qfc0_tGL" |
|
|
905 |
}, |
|
|
906 |
"source": [ |
|
|
907 |
"## Training" |
|
|
908 |
] |
|
|
909 |
}, |
|
|
910 |
{ |
|
|
911 |
"cell_type": "code", |
|
|
912 |
"execution_count": 0, |
|
|
913 |
"metadata": { |
|
|
914 |
"code_folding": [], |
|
|
915 |
"colab": {}, |
|
|
916 |
"colab_type": "code", |
|
|
917 |
"id": "3YkqxURk_w8K" |
|
|
918 |
}, |
|
|
919 |
"outputs": [], |
|
|
920 |
"source": [ |
|
|
921 |
"for epoch in range(epochs):\n", |
|
|
922 |
" \n", |
|
|
923 |
" model.train()\n", |
|
|
924 |
" for xb,yb in train_dl:\n", |
|
|
925 |
" top_res, bottom_res = model(xb)\n", |
|
|
926 |
" top_y, bottom_y = train_seg, input\n", |
|
|
927 |
" z_mean, z_log_var = hooks.stored[4], hooks.stored[5] \n", |
|
|
928 |
" loss = SoftDiceLoss()(top_res, top_y) + \\\n", |
|
|
929 |
" (0.1 * KLDivergence()(z_mean, z_log_var)) + \\\n", |
|
|
930 |
" (0.1 * L2Loss()(bottom_res, bottom_y))\n", |
|
|
931 |
" loss.backward()\n", |
|
|
932 |
" optimizer.step()\n", |
|
|
933 |
" optimizer.zero_grad()\n", |
|
|
934 |
"\n", |
|
|
935 |
" model.eval()\n", |
|
|
936 |
" with torch.no_grad():\n", |
|
|
937 |
" tot_loss, tot_acc = 0., 0.\n", |
|
|
938 |
" for xb, yb in valid_dl: \n", |
|
|
939 |
" top_res, bottom_res = model(xb)\n", |
|
|
940 |
" top_y, bottom_y = valid_seg, input\n", |
|
|
941 |
" z_mean, z_log_var = hooks.stored[4], hooks.stored[5]\n", |
|
|
942 |
" loss = SoftDiceLoss()(top_res, top_y) + \\\n", |
|
|
943 |
" (0.1 * KLDivergence()(z_mean, z_log_var)) + \\\n", |
|
|
944 |
" (0.1 * L2Loss()(bottom_res, bottom_y)) \n", |
|
|
945 |
" tot_loss += loss\n", |
|
|
946 |
" tot_acc += dice_coeff\n", |
|
|
947 |
"\n", |
|
|
948 |
" nv = len(valid_dl)\n", |
|
|
949 |
" return tot_loss/nv, tot_acc/nv" |
|
|
950 |
] |
|
|
951 |
}, |
|
|
952 |
{ |
|
|
953 |
"cell_type": "markdown", |
|
|
954 |
"metadata": { |
|
|
955 |
"colab_type": "text", |
|
|
956 |
"heading_collapsed": true, |
|
|
957 |
"id": "GXaVq0m5hUbO" |
|
|
958 |
}, |
|
|
959 |
"source": [ |
|
|
960 |
"## Memory-check" |
|
|
961 |
] |
|
|
962 |
}, |
|
|
963 |
{ |
|
|
964 |
"cell_type": "code", |
|
|
965 |
"execution_count": 21, |
|
|
966 |
"metadata": { |
|
|
967 |
"colab": {}, |
|
|
968 |
"colab_type": "code", |
|
|
969 |
"hidden": true, |
|
|
970 |
"id": "Xuy-W1NFhUbR", |
|
|
971 |
"outputId": "f9a8cc29-2291-488f-ea8f-44b63cb8bd29" |
|
|
972 |
}, |
|
|
973 |
"outputs": [ |
|
|
974 |
{ |
|
|
975 |
"data": { |
|
|
976 |
"text/plain": [ |
|
|
977 |
"9884946432" |
|
|
978 |
] |
|
|
979 |
}, |
|
|
980 |
"execution_count": 21, |
|
|
981 |
"metadata": {}, |
|
|
982 |
"output_type": "execute_result" |
|
|
983 |
} |
|
|
984 |
], |
|
|
985 |
"source": [ |
|
|
986 |
"# Memory ocuupied by Pytorch `Tensors`\n", |
|
|
987 |
"torch.cuda.memory_allocated(device=None)" |
|
|
988 |
] |
|
|
989 |
}, |
|
|
990 |
{ |
|
|
991 |
"cell_type": "code", |
|
|
992 |
"execution_count": 22, |
|
|
993 |
"metadata": { |
|
|
994 |
"colab": { |
|
|
995 |
"base_uri": "https://localhost:8080/", |
|
|
996 |
"height": 697 |
|
|
997 |
}, |
|
|
998 |
"colab_type": "code", |
|
|
999 |
"hidden": true, |
|
|
1000 |
"id": "-F1mbF44hUbO", |
|
|
1001 |
"outputId": "6b4ff5a9-766a-48d0-fc2c-bd0675e303e8", |
|
|
1002 |
"scrolled": true |
|
|
1003 |
}, |
|
|
1004 |
"outputs": [ |
|
|
1005 |
{ |
|
|
1006 |
"name": "stdout", |
|
|
1007 |
"output_type": "stream", |
|
|
1008 |
"text": [ |
|
|
1009 |
"|===========================================================================|\n", |
|
|
1010 |
"| PyTorch CUDA memory summary, device ID 1 |\n", |
|
|
1011 |
"|---------------------------------------------------------------------------|\n", |
|
|
1012 |
"| CUDA OOMs: 0 | cudaMalloc retries: 0 |\n", |
|
|
1013 |
"|===========================================================================|\n", |
|
|
1014 |
"| Metric | Cur Usage | Peak Usage | Tot Alloc | Tot Freed |\n", |
|
|
1015 |
"|---------------------------------------------------------------------------|\n", |
|
|
1016 |
"| Allocated memory | 9427 MB | 9855 MB | 10859 MB | 1432 MB |\n", |
|
|
1017 |
"| from large pool | 9423 MB | 9851 MB | 10847 MB | 1424 MB |\n", |
|
|
1018 |
"| from small pool | 3 MB | 3 MB | 11 MB | 8 MB |\n", |
|
|
1019 |
"|---------------------------------------------------------------------------|\n", |
|
|
1020 |
"| Active memory | 9427 MB | 9855 MB | 10859 MB | 1432 MB |\n", |
|
|
1021 |
"| from large pool | 9423 MB | 9851 MB | 10847 MB | 1424 MB |\n", |
|
|
1022 |
"| from small pool | 3 MB | 3 MB | 11 MB | 8 MB |\n", |
|
|
1023 |
"|---------------------------------------------------------------------------|\n", |
|
|
1024 |
"| GPU reserved memory | 9482 MB | 10012 MB | 10012 MB | 542720 KB |\n", |
|
|
1025 |
"| from large pool | 9478 MB | 10008 MB | 10008 MB | 542720 KB |\n", |
|
|
1026 |
"| from small pool | 4 MB | 4 MB | 4 MB | 0 KB |\n", |
|
|
1027 |
"|---------------------------------------------------------------------------|\n", |
|
|
1028 |
"| Non-releasable memory | 56300 KB | 168416 KB | 981 MB | 926 MB |\n", |
|
|
1029 |
"| from large pool | 55744 KB | 167872 KB | 970 MB | 915 MB |\n", |
|
|
1030 |
"| from small pool | 556 KB | 2034 KB | 11 MB | 11 MB |\n", |
|
|
1031 |
"|---------------------------------------------------------------------------|\n", |
|
|
1032 |
"| Allocations | 193 | 265 | 837 | 644 |\n", |
|
|
1033 |
"| from large pool | 76 | 124 | 145 | 69 |\n", |
|
|
1034 |
"| from small pool | 117 | 142 | 692 | 575 |\n", |
|
|
1035 |
"|---------------------------------------------------------------------------|\n", |
|
|
1036 |
"| Active allocs | 193 | 265 | 837 | 644 |\n", |
|
|
1037 |
"| from large pool | 76 | 124 | 145 | 69 |\n", |
|
|
1038 |
"| from small pool | 117 | 142 | 692 | 575 |\n", |
|
|
1039 |
"|---------------------------------------------------------------------------|\n", |
|
|
1040 |
"| GPU reserved segments | 66 | 91 | 91 | 25 |\n", |
|
|
1041 |
"| from large pool | 64 | 89 | 89 | 25 |\n", |
|
|
1042 |
"| from small pool | 2 | 2 | 2 | 0 |\n", |
|
|
1043 |
"|---------------------------------------------------------------------------|\n", |
|
|
1044 |
"| Non-releasable allocs | 10 | 31 | 100 | 90 |\n", |
|
|
1045 |
"| from large pool | 8 | 29 | 42 | 34 |\n", |
|
|
1046 |
"| from small pool | 2 | 5 | 58 | 56 |\n", |
|
|
1047 |
"|===========================================================================|\n", |
|
|
1048 |
"\n" |
|
|
1049 |
] |
|
|
1050 |
} |
|
|
1051 |
], |
|
|
1052 |
"source": [ |
|
|
1053 |
"# Memory status\n", |
|
|
1054 |
"print(torch.cuda.memory_summary(device=None, abbreviated=False))" |
|
|
1055 |
] |
|
|
1056 |
} |
|
|
1057 |
], |
|
|
1058 |
"metadata": { |
|
|
1059 |
"accelerator": "GPU", |
|
|
1060 |
"colab": { |
|
|
1061 |
"collapsed_sections": [ |
|
|
1062 |
"b6KgSfpahUZ1", |
|
|
1063 |
"C77ffh0whUZ7", |
|
|
1064 |
"btBiurUPxx7t", |
|
|
1065 |
"MY131WWbx3nN", |
|
|
1066 |
"BKmlf1qY74Fx", |
|
|
1067 |
"Sq9kLEFbx8sF", |
|
|
1068 |
"dtLzCKAOEn6c", |
|
|
1069 |
"ZSPf7atqhOuG", |
|
|
1070 |
"MsP_HOw2_6Jd", |
|
|
1071 |
"GPK9Qfc0_tGL", |
|
|
1072 |
"GXaVq0m5hUbO", |
|
|
1073 |
"v-ODWm3ehUbG" |
|
|
1074 |
], |
|
|
1075 |
"name": "model_prototype_1.ipynb", |
|
|
1076 |
"provenance": [] |
|
|
1077 |
}, |
|
|
1078 |
"kernelspec": { |
|
|
1079 |
"display_name": "Python 3", |
|
|
1080 |
"language": "python", |
|
|
1081 |
"name": "python3" |
|
|
1082 |
}, |
|
|
1083 |
"language_info": { |
|
|
1084 |
"codemirror_mode": { |
|
|
1085 |
"name": "ipython", |
|
|
1086 |
"version": 3 |
|
|
1087 |
}, |
|
|
1088 |
"file_extension": ".py", |
|
|
1089 |
"mimetype": "text/x-python", |
|
|
1090 |
"name": "python", |
|
|
1091 |
"nbconvert_exporter": "python", |
|
|
1092 |
"pygments_lexer": "ipython3", |
|
|
1093 |
"version": "3.6.5" |
|
|
1094 |
} |
|
|
1095 |
}, |
|
|
1096 |
"nbformat": 4, |
|
|
1097 |
"nbformat_minor": 1 |
|
|
1098 |
} |