[c9a8c4]: / skull-stripping / test.py

Download this file

179 lines (135 with data), 5.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from __future__ import print_function
import matplotlib
matplotlib.use('Agg')
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import sys
import tensorflow as tf
import warnings
warnings.filterwarnings('ignore')
from keras import backend as K
from scipy.io import savemat
from skimage.io import imsave
from data import load_data
from net import unet
weights_path = './weights_128.h5'
train_images_path = './data/train/'
test_images_path = './data/valid/'
predictions_path = './predictions/'
gpu = '0'
def predict(mean=30.0, std=50.0):
# load and normalize data
if mean == 0.0 and std == 1.0:
imgs_train, _, _ = load_data(train_images_path)
mean = np.mean(imgs_train)
std = np.std(imgs_train)
imgs_test, imgs_mask_test, names_test = load_data(test_images_path)
original_imgs_test = imgs_test.astype(np.uint8)
imgs_test -= mean
imgs_test /= std
# load model with weights
model = unet()
model.load_weights(weights_path)
# make predictions
imgs_mask_pred = model.predict(imgs_test, verbose=1)
# save to mat file for further processing
if not os.path.exists(predictions_path):
os.mkdir(predictions_path)
matdict = {
'pred': imgs_mask_pred,
'image': original_imgs_test,
'mask': imgs_mask_test,
'name': names_test
}
savemat(os.path.join(predictions_path, 'predictions.mat'), matdict)
# save images with segmentation and ground truth mask overlay
for i in range(len(imgs_test)):
pred = imgs_mask_pred[i]
image = original_imgs_test[i]
mask = imgs_mask_test[i]
# segmentation mask is for the middle slice
image_rgb = gray2rgb(image[:, :, 1])
# prediction contour image
pred = (np.round(pred[:, :, 0]) * 255.0).astype(np.uint8)
pred, contours, _ = cv2.findContours(
pred, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
pred = np.zeros(pred.shape)
cv2.drawContours(pred, contours, -1, (255, 0, 0), 1)
# ground truth contour image
mask = (np.round(mask[:, :, 0]) * 255.0).astype(np.uint8)
mask, contours, _ = cv2.findContours(
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
mask = np.zeros(mask.shape)
cv2.drawContours(mask, contours, -1, (255, 0, 0), 1)
# combine image with contours
pred_rgb = np.array(image_rgb)
annotation = pred_rgb[:, :, 1]
annotation[np.maximum(pred, mask) == 255] = 0
pred_rgb[:, :, 0] = pred_rgb[:, :, 1] = pred_rgb[:, :, 2] = annotation
pred_rgb[:, :, 2] = np.maximum(pred_rgb[:, :, 2], mask)
pred_rgb[:, :, 0] = np.maximum(pred_rgb[:, :, 0], pred)
imsave(os.path.join(predictions_path,
names_test[i] + '.png'), pred_rgb)
return imgs_mask_test, imgs_mask_pred, names_test
def evaluate(imgs_mask_test, imgs_mask_pred, names_test):
test_pred = zip(imgs_mask_test, imgs_mask_pred)
name_test_pred = zip(names_test, test_pred)
name_test_pred.sort(key=lambda x: x[0])
patient_ids = []
dc_values = []
i = 0 # start slice index
for p in range(len(name_test_pred)):
# get case id (names are in format <case_id>_<slice_number>)
p_id = '_'.join(name_test_pred[p][0].split('_')[:-1])
# if this is the last slice for the processed case
if p + 1 >= len(name_test_pred) or p_id not in name_test_pred[p + 1][0]:
# ground truth segmentation:
p_slices_mask = np.array(
[im_m[0] for im_id, im_m in name_test_pred[i:p + 1]])
# predicted segmentation:
p_slices_pred = np.array(
[im_m[1] for im_id, im_m in name_test_pred[i:p + 1]])
patient_ids.append(p_id)
dc_values.append(dice_coefficient(p_slices_pred, p_slices_mask))
print(p_id + ':\t' + str(dc_values[-1]))
i = p + 1
return dc_values, patient_ids
def dice_coefficient(prediction, ground_truth):
prediction = np.round(prediction).astype(int)
ground_truth = np.round(ground_truth).astype(int)
return np.sum(prediction[ground_truth == 1]) * 2.0 / (np.sum(prediction) + np.sum(ground_truth))
def gray2rgb(im):
w, h = im.shape
ret = np.empty((w, h, 3), dtype=np.uint8)
ret[:, :, 2] = ret[:, :, 1] = ret[:, :, 0] = im
return ret
def plot_dc(labels, values):
y_pos = np.arange(len(labels))
fig = plt.figure(figsize=(12, 8))
plt.barh(y_pos, values, align='center', alpha=0.5)
plt.yticks(y_pos, labels)
plt.xticks(np.arange(0.5, 1.0, 0.05))
plt.xlabel('Dice coefficient', fontsize='x-large')
plt.axes().xaxis.grid(color='black', linestyle='-', linewidth=0.5)
axes = plt.gca()
axes.set_xlim([0.5, 1.0])
plt.tight_layout()
axes.axvline(np.mean(values), color='green', linewidth=2)
plt.savefig('DSC.png', bbox_inches='tight')
plt.close(fig)
if __name__ == '__main__':
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
K.set_session(sess)
if len(sys.argv) > 1:
gpu = sys.argv[1]
device = '/gpu:' + gpu
with tf.device(device):
imgs_mask_test, imgs_mask_pred, names_test = predict()
values, labels = evaluate(imgs_mask_test, imgs_mask_pred, names_test)
print('\nAverage DSC: ' + str(np.mean(values)))
# plot results
plot_dc(labels, values)