|
a |
|
b/flair-segmentation/test.py |
|
|
1 |
from __future__ import print_function |
|
|
2 |
|
|
|
3 |
import matplotlib |
|
|
4 |
|
|
|
5 |
matplotlib.use("Agg") |
|
|
6 |
import cv2 |
|
|
7 |
import matplotlib.pyplot as plt |
|
|
8 |
import numpy as np |
|
|
9 |
import os |
|
|
10 |
import sys |
|
|
11 |
import tensorflow as tf |
|
|
12 |
import warnings |
|
|
13 |
|
|
|
14 |
warnings.filterwarnings("ignore") |
|
|
15 |
|
|
|
16 |
from keras import backend as K |
|
|
17 |
from scipy.io import savemat |
|
|
18 |
from skimage.io import imsave |
|
|
19 |
|
|
|
20 |
from data import load_data |
|
|
21 |
from net import unet |
|
|
22 |
|
|
|
23 |
weights_path = "./weights_128.h5" |
|
|
24 |
train_images_path = "./data/train/" |
|
|
25 |
test_images_path = "./data/valid/" |
|
|
26 |
predictions_path = "./predictions/" |
|
|
27 |
|
|
|
28 |
gpu = "0" |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
def predict(mean=20.0, std=43.0): |
|
|
32 |
# load and normalize data |
|
|
33 |
if mean == 0.0 and std == 1.0: |
|
|
34 |
imgs_train, _, _ = load_data(train_images_path) |
|
|
35 |
mean = np.mean(imgs_train) |
|
|
36 |
std = np.std(imgs_train) |
|
|
37 |
|
|
|
38 |
imgs_test, imgs_mask_test, names_test = load_data(test_images_path) |
|
|
39 |
original_imgs_test = imgs_test.astype(np.uint8) |
|
|
40 |
|
|
|
41 |
imgs_test -= mean |
|
|
42 |
imgs_test /= std |
|
|
43 |
|
|
|
44 |
# load model with weights |
|
|
45 |
model = unet() |
|
|
46 |
model.load_weights(weights_path) |
|
|
47 |
|
|
|
48 |
# make predictions |
|
|
49 |
imgs_mask_pred = model.predict(imgs_test, verbose=1) |
|
|
50 |
|
|
|
51 |
# save to mat file for further processing |
|
|
52 |
if not os.path.exists(predictions_path): |
|
|
53 |
os.mkdir(predictions_path) |
|
|
54 |
|
|
|
55 |
matdict = { |
|
|
56 |
"pred": imgs_mask_pred, |
|
|
57 |
"image": original_imgs_test, |
|
|
58 |
"mask": imgs_mask_test, |
|
|
59 |
"name": names_test, |
|
|
60 |
} |
|
|
61 |
savemat(os.path.join(predictions_path, "predictions.mat"), matdict) |
|
|
62 |
|
|
|
63 |
# save images with segmentation and ground truth mask overlay |
|
|
64 |
for i in range(len(imgs_test)): |
|
|
65 |
pred = imgs_mask_pred[i] |
|
|
66 |
image = original_imgs_test[i] |
|
|
67 |
mask = imgs_mask_test[i] |
|
|
68 |
|
|
|
69 |
# segmentation mask is for the middle slice |
|
|
70 |
image_rgb = gray2rgb(image[:, :, 1]) |
|
|
71 |
|
|
|
72 |
# prediction contour image |
|
|
73 |
pred = (np.round(pred[:, :, 0]) * 255.0).astype(np.uint8) |
|
|
74 |
pred, contours, _ = cv2.findContours( |
|
|
75 |
pred, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE |
|
|
76 |
) |
|
|
77 |
pred = np.zeros(pred.shape) |
|
|
78 |
cv2.drawContours(pred, contours, -1, (255, 0, 0), 1) |
|
|
79 |
|
|
|
80 |
# ground truth contour image |
|
|
81 |
mask = (np.round(mask[:, :, 0]) * 255.0).astype(np.uint8) |
|
|
82 |
mask, contours, _ = cv2.findContours( |
|
|
83 |
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE |
|
|
84 |
) |
|
|
85 |
mask = np.zeros(mask.shape) |
|
|
86 |
cv2.drawContours(mask, contours, -1, (255, 0, 0), 1) |
|
|
87 |
|
|
|
88 |
# combine image with contours |
|
|
89 |
pred_rgb = np.array(image_rgb) |
|
|
90 |
annotation = pred_rgb[:, :, 1] |
|
|
91 |
annotation[np.maximum(pred, mask) == 255] = 0 |
|
|
92 |
pred_rgb[:, :, 0] = pred_rgb[:, :, 1] = pred_rgb[:, :, 2] = annotation |
|
|
93 |
pred_rgb[:, :, 2] = np.maximum(pred_rgb[:, :, 2], mask) |
|
|
94 |
pred_rgb[:, :, 0] = np.maximum(pred_rgb[:, :, 0], pred) |
|
|
95 |
|
|
|
96 |
imsave(os.path.join(predictions_path, names_test[i] + ".png"), pred_rgb) |
|
|
97 |
|
|
|
98 |
return imgs_mask_test, imgs_mask_pred, names_test |
|
|
99 |
|
|
|
100 |
|
|
|
101 |
def evaluate(imgs_mask_test, imgs_mask_pred, names_test): |
|
|
102 |
test_pred = zip(imgs_mask_test, imgs_mask_pred) |
|
|
103 |
name_test_pred = zip(names_test, test_pred) |
|
|
104 |
name_test_pred.sort(key=lambda x: x[0]) |
|
|
105 |
|
|
|
106 |
patient_ids = [] |
|
|
107 |
dc_values = [] |
|
|
108 |
|
|
|
109 |
i = 0 # start slice index |
|
|
110 |
for p in range(len(name_test_pred)): |
|
|
111 |
# get case id (names are in format <case_id>_<slice_number>) |
|
|
112 |
p_id = "_".join(name_test_pred[p][0].split("_")[:-1]) |
|
|
113 |
|
|
|
114 |
# if this is the last slice for the processed case |
|
|
115 |
if p + 1 >= len(name_test_pred) or p_id not in name_test_pred[p + 1][0]: |
|
|
116 |
# ground truth segmentation: |
|
|
117 |
p_slices_mask = np.array( |
|
|
118 |
[im_m[0] for im_id, im_m in name_test_pred[i : p + 1]] |
|
|
119 |
) |
|
|
120 |
# predicted segmentation: |
|
|
121 |
p_slices_pred = np.array( |
|
|
122 |
[im_m[1] for im_id, im_m in name_test_pred[i : p + 1]] |
|
|
123 |
) |
|
|
124 |
|
|
|
125 |
patient_ids.append(p_id) |
|
|
126 |
dc_values.append(dice_coefficient(p_slices_pred, p_slices_mask)) |
|
|
127 |
print(p_id + ":\t" + str(dc_values[-1])) |
|
|
128 |
|
|
|
129 |
i = p + 1 |
|
|
130 |
|
|
|
131 |
return dc_values, patient_ids |
|
|
132 |
|
|
|
133 |
|
|
|
134 |
def dice_coefficient(prediction, ground_truth): |
|
|
135 |
prediction = np.round(prediction).astype(int) |
|
|
136 |
ground_truth = np.round(ground_truth).astype(int) |
|
|
137 |
return ( |
|
|
138 |
np.sum(prediction[ground_truth == 1]) |
|
|
139 |
* 2.0 |
|
|
140 |
/ (np.sum(prediction) + np.sum(ground_truth)) |
|
|
141 |
) |
|
|
142 |
|
|
|
143 |
|
|
|
144 |
def gray2rgb(im): |
|
|
145 |
w, h = im.shape |
|
|
146 |
ret = np.empty((w, h, 3), dtype=np.uint8) |
|
|
147 |
ret[:, :, 2] = ret[:, :, 1] = ret[:, :, 0] = im |
|
|
148 |
return ret |
|
|
149 |
|
|
|
150 |
|
|
|
151 |
def plot_dc(labels, values): |
|
|
152 |
y_pos = np.arange(len(labels)) |
|
|
153 |
|
|
|
154 |
fig = plt.figure(figsize=(12, 8)) |
|
|
155 |
plt.barh(y_pos, values, align="center", alpha=0.5) |
|
|
156 |
plt.yticks(y_pos, labels) |
|
|
157 |
plt.xticks(np.arange(0.5, 1.0, 0.05)) |
|
|
158 |
plt.xlabel("Dice coefficient", fontsize="x-large") |
|
|
159 |
plt.axes().xaxis.grid(color="black", linestyle="-", linewidth=0.5) |
|
|
160 |
axes = plt.gca() |
|
|
161 |
axes.set_xlim([0.5, 1.0]) |
|
|
162 |
plt.tight_layout() |
|
|
163 |
axes.axvline(np.mean(values), color="green", linewidth=2) |
|
|
164 |
|
|
|
165 |
plt.savefig("DSC.png", bbox_inches="tight") |
|
|
166 |
plt.close(fig) |
|
|
167 |
|
|
|
168 |
|
|
|
169 |
if __name__ == "__main__": |
|
|
170 |
|
|
|
171 |
config = tf.ConfigProto() |
|
|
172 |
config.gpu_options.allow_growth = True |
|
|
173 |
sess = tf.Session(config=config) |
|
|
174 |
K.set_session(sess) |
|
|
175 |
|
|
|
176 |
if len(sys.argv) > 1: |
|
|
177 |
gpu = sys.argv[1] |
|
|
178 |
device = "/gpu:" + gpu |
|
|
179 |
|
|
|
180 |
with tf.device(device): |
|
|
181 |
imgs_mask_test, imgs_mask_pred, names_test = predict() |
|
|
182 |
values, labels = evaluate(imgs_mask_test, imgs_mask_pred, names_test) |
|
|
183 |
|
|
|
184 |
print("\nAverage DSC: " + str(np.mean(values))) |
|
|
185 |
|
|
|
186 |
# plot results |
|
|
187 |
plot_dc(labels, values) |