import argparse
import os
import numpy as np
import torch
from matplotlib import pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
from medpy.filter.binary import largest_connected_component
from skimage.io import imsave
from torch.utils.data import DataLoader
from tqdm import tqdm
from dataset import BrainSegmentationDataset as Dataset
from unet import UNet
from utils import dsc, gray2rgb, outline
def main(args):
makedirs(args)
device = torch.device("cpu" if not torch.cuda.is_available() else args.device)
loader = data_loader(args)
with torch.set_grad_enabled(False):
unet = UNet(in_channels=Dataset.in_channels, out_channels=Dataset.out_channels)
state_dict = torch.load(args.weights, map_location=device)
unet.load_state_dict(state_dict)
unet.eval()
unet.to(device)
input_list = []
pred_list = []
true_list = []
for i, data in tqdm(enumerate(loader)):
x, y_true = data
x, y_true = x.to(device), y_true.to(device)
y_pred = unet(x)
y_pred_np = y_pred.detach().cpu().numpy()
pred_list.extend([y_pred_np[s] for s in range(y_pred_np.shape[0])])
y_true_np = y_true.detach().cpu().numpy()
true_list.extend([y_true_np[s] for s in range(y_true_np.shape[0])])
x_np = x.detach().cpu().numpy()
input_list.extend([x_np[s] for s in range(x_np.shape[0])])
volumes = postprocess_per_volume(
input_list,
pred_list,
true_list,
loader.dataset.patient_slice_index,
loader.dataset.patients,
)
dsc_dist = dsc_distribution(volumes)
dsc_dist_plot = plot_dsc(dsc_dist)
imsave(args.figure, dsc_dist_plot)
for p in volumes:
x = volumes[p][0]
y_pred = volumes[p][1]
y_true = volumes[p][2]
for s in range(x.shape[0]):
image = gray2rgb(x[s, 1]) # channel 1 is for FLAIR
image = outline(image, y_pred[s, 0], color=[255, 0, 0])
image = outline(image, y_true[s, 0], color=[0, 255, 0])
filename = "{}-{}.png".format(p, str(s).zfill(2))
filepath = os.path.join(args.predictions, filename)
imsave(filepath, image)
def data_loader(args):
dataset = Dataset(
images_dir=args.images,
subset="validation",
image_size=args.image_size,
random_sampling=False,
)
loader = DataLoader(
dataset, batch_size=args.batch_size, drop_last=False, num_workers=1
)
return loader
def postprocess_per_volume(
input_list, pred_list, true_list, patient_slice_index, patients
):
volumes = {}
num_slices = np.bincount([p[0] for p in patient_slice_index])
index = 0
for p in range(len(num_slices)):
volume_in = np.array(input_list[index : index + num_slices[p]])
volume_pred = np.round(
np.array(pred_list[index : index + num_slices[p]])
).astype(int)
volume_pred = largest_connected_component(volume_pred)
volume_true = np.array(true_list[index : index + num_slices[p]])
volumes[patients[p]] = (volume_in, volume_pred, volume_true)
index += num_slices[p]
return volumes
def dsc_distribution(volumes):
dsc_dict = {}
for p in volumes:
y_pred = volumes[p][1]
y_true = volumes[p][2]
dsc_dict[p] = dsc(y_pred, y_true, lcc=False)
return dsc_dict
def plot_dsc(dsc_dist):
y_positions = np.arange(len(dsc_dist))
dsc_dist = sorted(dsc_dist.items(), key=lambda x: x[1])
values = [x[1] for x in dsc_dist]
labels = [x[0] for x in dsc_dist]
labels = ["_".join(l.split("_")[1:-1]) for l in labels]
fig = plt.figure(figsize=(12, 8))
canvas = FigureCanvasAgg(fig)
plt.barh(y_positions, values, align="center", color="skyblue")
plt.yticks(y_positions, labels)
plt.xticks(np.arange(0.0, 1.0, 0.1))
plt.xlim([0.0, 1.0])
plt.gca().axvline(np.mean(values), color="tomato", linewidth=2)
plt.gca().axvline(np.median(values), color="forestgreen", linewidth=2)
plt.xlabel("Dice coefficient", fontsize="x-large")
plt.gca().xaxis.grid(color="silver", alpha=0.5, linestyle="--", linewidth=1)
plt.tight_layout()
canvas.draw()
plt.close()
s, (width, height) = canvas.print_to_buffer()
return np.fromstring(s, np.uint8).reshape((height, width, 4))
def makedirs(args):
os.makedirs(args.predictions, exist_ok=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Inference for segmentation of brain MRI"
)
parser.add_argument(
"--device",
type=str,
default="cuda:0",
help="device for training (default: cuda:0)",
)
parser.add_argument(
"--batch-size",
type=int,
default=32,
help="input batch size for training (default: 32)",
)
parser.add_argument(
"--weights", type=str, required=True, help="path to weights file"
)
parser.add_argument(
"--images", type=str, default="./kaggle_3m", help="root folder with images"
)
parser.add_argument(
"--image-size",
type=int,
default=256,
help="target input image size (default: 256)",
)
parser.add_argument(
"--predictions",
type=str,
default="./predictions",
help="folder for saving images with prediction outlines",
)
parser.add_argument(
"--figure",
type=str,
default="./dsc.png",
help="filename for DSC distribution figure",
)
args = parser.parse_args()
main(args)