|
a |
|
b/train.py |
|
|
1 |
import argparse |
|
|
2 |
import json |
|
|
3 |
import os |
|
|
4 |
|
|
|
5 |
import numpy as np |
|
|
6 |
import torch |
|
|
7 |
import torch.optim as optim |
|
|
8 |
from torch.utils.data import DataLoader |
|
|
9 |
from tqdm import tqdm |
|
|
10 |
|
|
|
11 |
from dataset import BrainSegmentationDataset as Dataset |
|
|
12 |
from logger import Logger |
|
|
13 |
from loss import DiceLoss |
|
|
14 |
from transform import transforms |
|
|
15 |
from unet import UNet |
|
|
16 |
from utils import log_images, dsc |
|
|
17 |
|
|
|
18 |
|
|
|
19 |
def main(args): |
|
|
20 |
makedirs(args) |
|
|
21 |
snapshotargs(args) |
|
|
22 |
device = torch.device("cpu" if not torch.cuda.is_available() else args.device) |
|
|
23 |
|
|
|
24 |
loader_train, loader_valid = data_loaders(args) |
|
|
25 |
loaders = {"train": loader_train, "valid": loader_valid} |
|
|
26 |
|
|
|
27 |
unet = UNet(in_channels=Dataset.in_channels, out_channels=Dataset.out_channels) |
|
|
28 |
unet.to(device) |
|
|
29 |
|
|
|
30 |
dsc_loss = DiceLoss() |
|
|
31 |
best_validation_dsc = 0.0 |
|
|
32 |
|
|
|
33 |
optimizer = optim.Adam(unet.parameters(), lr=args.lr) |
|
|
34 |
|
|
|
35 |
logger = Logger(args.logs) |
|
|
36 |
loss_train = [] |
|
|
37 |
loss_valid = [] |
|
|
38 |
|
|
|
39 |
step = 0 |
|
|
40 |
|
|
|
41 |
for epoch in tqdm(range(args.epochs), total=args.epochs): |
|
|
42 |
for phase in ["train", "valid"]: |
|
|
43 |
if phase == "train": |
|
|
44 |
unet.train() |
|
|
45 |
else: |
|
|
46 |
unet.eval() |
|
|
47 |
|
|
|
48 |
validation_pred = [] |
|
|
49 |
validation_true = [] |
|
|
50 |
|
|
|
51 |
for i, data in enumerate(loaders[phase]): |
|
|
52 |
if phase == "train": |
|
|
53 |
step += 1 |
|
|
54 |
|
|
|
55 |
x, y_true = data |
|
|
56 |
x, y_true = x.to(device), y_true.to(device) |
|
|
57 |
|
|
|
58 |
optimizer.zero_grad() |
|
|
59 |
|
|
|
60 |
with torch.set_grad_enabled(phase == "train"): |
|
|
61 |
y_pred = unet(x) |
|
|
62 |
|
|
|
63 |
loss = dsc_loss(y_pred, y_true) |
|
|
64 |
|
|
|
65 |
if phase == "valid": |
|
|
66 |
loss_valid.append(loss.item()) |
|
|
67 |
y_pred_np = y_pred.detach().cpu().numpy() |
|
|
68 |
validation_pred.extend( |
|
|
69 |
[y_pred_np[s] for s in range(y_pred_np.shape[0])] |
|
|
70 |
) |
|
|
71 |
y_true_np = y_true.detach().cpu().numpy() |
|
|
72 |
validation_true.extend( |
|
|
73 |
[y_true_np[s] for s in range(y_true_np.shape[0])] |
|
|
74 |
) |
|
|
75 |
if (epoch % args.vis_freq == 0) or (epoch == args.epochs - 1): |
|
|
76 |
if i * args.batch_size < args.vis_images: |
|
|
77 |
tag = "image/{}".format(i) |
|
|
78 |
num_images = args.vis_images - i * args.batch_size |
|
|
79 |
logger.image_list_summary( |
|
|
80 |
tag, |
|
|
81 |
log_images(x, y_true, y_pred)[:num_images], |
|
|
82 |
step, |
|
|
83 |
) |
|
|
84 |
|
|
|
85 |
if phase == "train": |
|
|
86 |
loss_train.append(loss.item()) |
|
|
87 |
loss.backward() |
|
|
88 |
optimizer.step() |
|
|
89 |
|
|
|
90 |
if phase == "train" and (step + 1) % 10 == 0: |
|
|
91 |
log_loss_summary(logger, loss_train, step) |
|
|
92 |
loss_train = [] |
|
|
93 |
|
|
|
94 |
if phase == "valid": |
|
|
95 |
log_loss_summary(logger, loss_valid, step, prefix="val_") |
|
|
96 |
mean_dsc = np.mean( |
|
|
97 |
dsc_per_volume( |
|
|
98 |
validation_pred, |
|
|
99 |
validation_true, |
|
|
100 |
loader_valid.dataset.patient_slice_index, |
|
|
101 |
) |
|
|
102 |
) |
|
|
103 |
logger.scalar_summary("val_dsc", mean_dsc, step) |
|
|
104 |
if mean_dsc > best_validation_dsc: |
|
|
105 |
best_validation_dsc = mean_dsc |
|
|
106 |
torch.save(unet.state_dict(), os.path.join(args.weights, "unet.pt")) |
|
|
107 |
loss_valid = [] |
|
|
108 |
|
|
|
109 |
print("Best validation mean DSC: {:4f}".format(best_validation_dsc)) |
|
|
110 |
|
|
|
111 |
|
|
|
112 |
def data_loaders(args): |
|
|
113 |
dataset_train, dataset_valid = datasets(args) |
|
|
114 |
|
|
|
115 |
def worker_init(worker_id): |
|
|
116 |
np.random.seed(42 + worker_id) |
|
|
117 |
|
|
|
118 |
loader_train = DataLoader( |
|
|
119 |
dataset_train, |
|
|
120 |
batch_size=args.batch_size, |
|
|
121 |
shuffle=True, |
|
|
122 |
drop_last=True, |
|
|
123 |
num_workers=args.workers, |
|
|
124 |
worker_init_fn=worker_init, |
|
|
125 |
) |
|
|
126 |
loader_valid = DataLoader( |
|
|
127 |
dataset_valid, |
|
|
128 |
batch_size=args.batch_size, |
|
|
129 |
drop_last=False, |
|
|
130 |
num_workers=args.workers, |
|
|
131 |
worker_init_fn=worker_init, |
|
|
132 |
) |
|
|
133 |
|
|
|
134 |
return loader_train, loader_valid |
|
|
135 |
|
|
|
136 |
|
|
|
137 |
def datasets(args): |
|
|
138 |
train = Dataset( |
|
|
139 |
images_dir=args.images, |
|
|
140 |
subset="train", |
|
|
141 |
image_size=args.image_size, |
|
|
142 |
transform=transforms(scale=args.aug_scale, angle=args.aug_angle, flip_prob=0.5), |
|
|
143 |
) |
|
|
144 |
valid = Dataset( |
|
|
145 |
images_dir=args.images, |
|
|
146 |
subset="validation", |
|
|
147 |
image_size=args.image_size, |
|
|
148 |
random_sampling=False, |
|
|
149 |
) |
|
|
150 |
return train, valid |
|
|
151 |
|
|
|
152 |
|
|
|
153 |
def dsc_per_volume(validation_pred, validation_true, patient_slice_index): |
|
|
154 |
dsc_list = [] |
|
|
155 |
num_slices = np.bincount([p[0] for p in patient_slice_index]) |
|
|
156 |
index = 0 |
|
|
157 |
for p in range(len(num_slices)): |
|
|
158 |
y_pred = np.array(validation_pred[index : index + num_slices[p]]) |
|
|
159 |
y_true = np.array(validation_true[index : index + num_slices[p]]) |
|
|
160 |
dsc_list.append(dsc(y_pred, y_true)) |
|
|
161 |
index += num_slices[p] |
|
|
162 |
return dsc_list |
|
|
163 |
|
|
|
164 |
|
|
|
165 |
def log_loss_summary(logger, loss, step, prefix=""): |
|
|
166 |
logger.scalar_summary(prefix + "loss", np.mean(loss), step) |
|
|
167 |
|
|
|
168 |
|
|
|
169 |
def makedirs(args): |
|
|
170 |
os.makedirs(args.weights, exist_ok=True) |
|
|
171 |
os.makedirs(args.logs, exist_ok=True) |
|
|
172 |
|
|
|
173 |
|
|
|
174 |
def snapshotargs(args): |
|
|
175 |
args_file = os.path.join(args.logs, "args.json") |
|
|
176 |
with open(args_file, "w") as fp: |
|
|
177 |
json.dump(vars(args), fp) |
|
|
178 |
|
|
|
179 |
|
|
|
180 |
if __name__ == "__main__": |
|
|
181 |
parser = argparse.ArgumentParser( |
|
|
182 |
description="Training U-Net model for segmentation of brain MRI" |
|
|
183 |
) |
|
|
184 |
parser.add_argument( |
|
|
185 |
"--batch-size", |
|
|
186 |
type=int, |
|
|
187 |
default=16, |
|
|
188 |
help="input batch size for training (default: 16)", |
|
|
189 |
) |
|
|
190 |
parser.add_argument( |
|
|
191 |
"--epochs", |
|
|
192 |
type=int, |
|
|
193 |
default=100, |
|
|
194 |
help="number of epochs to train (default: 100)", |
|
|
195 |
) |
|
|
196 |
parser.add_argument( |
|
|
197 |
"--lr", |
|
|
198 |
type=float, |
|
|
199 |
default=0.0001, |
|
|
200 |
help="initial learning rate (default: 0.001)", |
|
|
201 |
) |
|
|
202 |
parser.add_argument( |
|
|
203 |
"--device", |
|
|
204 |
type=str, |
|
|
205 |
default="cuda:0", |
|
|
206 |
help="device for training (default: cuda:0)", |
|
|
207 |
) |
|
|
208 |
parser.add_argument( |
|
|
209 |
"--workers", |
|
|
210 |
type=int, |
|
|
211 |
default=4, |
|
|
212 |
help="number of workers for data loading (default: 4)", |
|
|
213 |
) |
|
|
214 |
parser.add_argument( |
|
|
215 |
"--vis-images", |
|
|
216 |
type=int, |
|
|
217 |
default=200, |
|
|
218 |
help="number of visualization images to save in log file (default: 200)", |
|
|
219 |
) |
|
|
220 |
parser.add_argument( |
|
|
221 |
"--vis-freq", |
|
|
222 |
type=int, |
|
|
223 |
default=10, |
|
|
224 |
help="frequency of saving images to log file (default: 10)", |
|
|
225 |
) |
|
|
226 |
parser.add_argument( |
|
|
227 |
"--weights", type=str, default="./weights", help="folder to save weights" |
|
|
228 |
) |
|
|
229 |
parser.add_argument( |
|
|
230 |
"--logs", type=str, default="./logs", help="folder to save logs" |
|
|
231 |
) |
|
|
232 |
parser.add_argument( |
|
|
233 |
"--images", type=str, default="./kaggle_3m", help="root folder with images" |
|
|
234 |
) |
|
|
235 |
parser.add_argument( |
|
|
236 |
"--image-size", |
|
|
237 |
type=int, |
|
|
238 |
default=256, |
|
|
239 |
help="target input image size (default: 256)", |
|
|
240 |
) |
|
|
241 |
parser.add_argument( |
|
|
242 |
"--aug-scale", |
|
|
243 |
type=int, |
|
|
244 |
default=0.05, |
|
|
245 |
help="scale factor range for augmentation (default: 0.05)", |
|
|
246 |
) |
|
|
247 |
parser.add_argument( |
|
|
248 |
"--aug-angle", |
|
|
249 |
type=int, |
|
|
250 |
default=15, |
|
|
251 |
help="rotation angle range in degrees for augmentation (default: 15)", |
|
|
252 |
) |
|
|
253 |
args = parser.parse_args() |
|
|
254 |
main(args) |