|
a |
|
b/inference.py |
|
|
1 |
import argparse |
|
|
2 |
import os |
|
|
3 |
|
|
|
4 |
import numpy as np |
|
|
5 |
import torch |
|
|
6 |
from matplotlib import pyplot as plt |
|
|
7 |
from matplotlib.backends.backend_agg import FigureCanvasAgg |
|
|
8 |
from medpy.filter.binary import largest_connected_component |
|
|
9 |
from skimage.io import imsave |
|
|
10 |
from torch.utils.data import DataLoader |
|
|
11 |
from tqdm import tqdm |
|
|
12 |
|
|
|
13 |
from dataset import BrainSegmentationDataset as Dataset |
|
|
14 |
from unet import UNet |
|
|
15 |
from utils import dsc, gray2rgb, outline |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
def main(args): |
|
|
19 |
makedirs(args) |
|
|
20 |
device = torch.device("cpu" if not torch.cuda.is_available() else args.device) |
|
|
21 |
|
|
|
22 |
loader = data_loader(args) |
|
|
23 |
|
|
|
24 |
with torch.set_grad_enabled(False): |
|
|
25 |
unet = UNet(in_channels=Dataset.in_channels, out_channels=Dataset.out_channels) |
|
|
26 |
state_dict = torch.load(args.weights, map_location=device) |
|
|
27 |
unet.load_state_dict(state_dict) |
|
|
28 |
unet.eval() |
|
|
29 |
unet.to(device) |
|
|
30 |
|
|
|
31 |
input_list = [] |
|
|
32 |
pred_list = [] |
|
|
33 |
true_list = [] |
|
|
34 |
|
|
|
35 |
for i, data in tqdm(enumerate(loader)): |
|
|
36 |
x, y_true = data |
|
|
37 |
x, y_true = x.to(device), y_true.to(device) |
|
|
38 |
|
|
|
39 |
y_pred = unet(x) |
|
|
40 |
y_pred_np = y_pred.detach().cpu().numpy() |
|
|
41 |
pred_list.extend([y_pred_np[s] for s in range(y_pred_np.shape[0])]) |
|
|
42 |
|
|
|
43 |
y_true_np = y_true.detach().cpu().numpy() |
|
|
44 |
true_list.extend([y_true_np[s] for s in range(y_true_np.shape[0])]) |
|
|
45 |
|
|
|
46 |
x_np = x.detach().cpu().numpy() |
|
|
47 |
input_list.extend([x_np[s] for s in range(x_np.shape[0])]) |
|
|
48 |
|
|
|
49 |
volumes = postprocess_per_volume( |
|
|
50 |
input_list, |
|
|
51 |
pred_list, |
|
|
52 |
true_list, |
|
|
53 |
loader.dataset.patient_slice_index, |
|
|
54 |
loader.dataset.patients, |
|
|
55 |
) |
|
|
56 |
|
|
|
57 |
dsc_dist = dsc_distribution(volumes) |
|
|
58 |
|
|
|
59 |
dsc_dist_plot = plot_dsc(dsc_dist) |
|
|
60 |
imsave(args.figure, dsc_dist_plot) |
|
|
61 |
|
|
|
62 |
for p in volumes: |
|
|
63 |
x = volumes[p][0] |
|
|
64 |
y_pred = volumes[p][1] |
|
|
65 |
y_true = volumes[p][2] |
|
|
66 |
for s in range(x.shape[0]): |
|
|
67 |
image = gray2rgb(x[s, 1]) # channel 1 is for FLAIR |
|
|
68 |
image = outline(image, y_pred[s, 0], color=[255, 0, 0]) |
|
|
69 |
image = outline(image, y_true[s, 0], color=[0, 255, 0]) |
|
|
70 |
filename = "{}-{}.png".format(p, str(s).zfill(2)) |
|
|
71 |
filepath = os.path.join(args.predictions, filename) |
|
|
72 |
imsave(filepath, image) |
|
|
73 |
|
|
|
74 |
|
|
|
75 |
def data_loader(args): |
|
|
76 |
dataset = Dataset( |
|
|
77 |
images_dir=args.images, |
|
|
78 |
subset="validation", |
|
|
79 |
image_size=args.image_size, |
|
|
80 |
random_sampling=False, |
|
|
81 |
) |
|
|
82 |
loader = DataLoader( |
|
|
83 |
dataset, batch_size=args.batch_size, drop_last=False, num_workers=1 |
|
|
84 |
) |
|
|
85 |
return loader |
|
|
86 |
|
|
|
87 |
|
|
|
88 |
def postprocess_per_volume( |
|
|
89 |
input_list, pred_list, true_list, patient_slice_index, patients |
|
|
90 |
): |
|
|
91 |
volumes = {} |
|
|
92 |
num_slices = np.bincount([p[0] for p in patient_slice_index]) |
|
|
93 |
index = 0 |
|
|
94 |
for p in range(len(num_slices)): |
|
|
95 |
volume_in = np.array(input_list[index : index + num_slices[p]]) |
|
|
96 |
volume_pred = np.round( |
|
|
97 |
np.array(pred_list[index : index + num_slices[p]]) |
|
|
98 |
).astype(int) |
|
|
99 |
volume_pred = largest_connected_component(volume_pred) |
|
|
100 |
volume_true = np.array(true_list[index : index + num_slices[p]]) |
|
|
101 |
volumes[patients[p]] = (volume_in, volume_pred, volume_true) |
|
|
102 |
index += num_slices[p] |
|
|
103 |
return volumes |
|
|
104 |
|
|
|
105 |
|
|
|
106 |
def dsc_distribution(volumes): |
|
|
107 |
dsc_dict = {} |
|
|
108 |
for p in volumes: |
|
|
109 |
y_pred = volumes[p][1] |
|
|
110 |
y_true = volumes[p][2] |
|
|
111 |
dsc_dict[p] = dsc(y_pred, y_true, lcc=False) |
|
|
112 |
return dsc_dict |
|
|
113 |
|
|
|
114 |
|
|
|
115 |
def plot_dsc(dsc_dist): |
|
|
116 |
y_positions = np.arange(len(dsc_dist)) |
|
|
117 |
dsc_dist = sorted(dsc_dist.items(), key=lambda x: x[1]) |
|
|
118 |
values = [x[1] for x in dsc_dist] |
|
|
119 |
labels = [x[0] for x in dsc_dist] |
|
|
120 |
labels = ["_".join(l.split("_")[1:-1]) for l in labels] |
|
|
121 |
fig = plt.figure(figsize=(12, 8)) |
|
|
122 |
canvas = FigureCanvasAgg(fig) |
|
|
123 |
plt.barh(y_positions, values, align="center", color="skyblue") |
|
|
124 |
plt.yticks(y_positions, labels) |
|
|
125 |
plt.xticks(np.arange(0.0, 1.0, 0.1)) |
|
|
126 |
plt.xlim([0.0, 1.0]) |
|
|
127 |
plt.gca().axvline(np.mean(values), color="tomato", linewidth=2) |
|
|
128 |
plt.gca().axvline(np.median(values), color="forestgreen", linewidth=2) |
|
|
129 |
plt.xlabel("Dice coefficient", fontsize="x-large") |
|
|
130 |
plt.gca().xaxis.grid(color="silver", alpha=0.5, linestyle="--", linewidth=1) |
|
|
131 |
plt.tight_layout() |
|
|
132 |
canvas.draw() |
|
|
133 |
plt.close() |
|
|
134 |
s, (width, height) = canvas.print_to_buffer() |
|
|
135 |
return np.fromstring(s, np.uint8).reshape((height, width, 4)) |
|
|
136 |
|
|
|
137 |
|
|
|
138 |
def makedirs(args): |
|
|
139 |
os.makedirs(args.predictions, exist_ok=True) |
|
|
140 |
|
|
|
141 |
|
|
|
142 |
if __name__ == "__main__": |
|
|
143 |
parser = argparse.ArgumentParser( |
|
|
144 |
description="Inference for segmentation of brain MRI" |
|
|
145 |
) |
|
|
146 |
parser.add_argument( |
|
|
147 |
"--device", |
|
|
148 |
type=str, |
|
|
149 |
default="cuda:0", |
|
|
150 |
help="device for training (default: cuda:0)", |
|
|
151 |
) |
|
|
152 |
parser.add_argument( |
|
|
153 |
"--batch-size", |
|
|
154 |
type=int, |
|
|
155 |
default=32, |
|
|
156 |
help="input batch size for training (default: 32)", |
|
|
157 |
) |
|
|
158 |
parser.add_argument( |
|
|
159 |
"--weights", type=str, required=True, help="path to weights file" |
|
|
160 |
) |
|
|
161 |
parser.add_argument( |
|
|
162 |
"--images", type=str, default="./kaggle_3m", help="root folder with images" |
|
|
163 |
) |
|
|
164 |
parser.add_argument( |
|
|
165 |
"--image-size", |
|
|
166 |
type=int, |
|
|
167 |
default=256, |
|
|
168 |
help="target input image size (default: 256)", |
|
|
169 |
) |
|
|
170 |
parser.add_argument( |
|
|
171 |
"--predictions", |
|
|
172 |
type=str, |
|
|
173 |
default="./predictions", |
|
|
174 |
help="folder for saving images with prediction outlines", |
|
|
175 |
) |
|
|
176 |
parser.add_argument( |
|
|
177 |
"--figure", |
|
|
178 |
type=str, |
|
|
179 |
default="./dsc.png", |
|
|
180 |
help="filename for DSC distribution figure", |
|
|
181 |
) |
|
|
182 |
|
|
|
183 |
args = parser.parse_args() |
|
|
184 |
main(args) |