Download this file

360 lines (303 with data), 12.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
"""
Model train script
python -m adpkd_segmentation.train --config --config path_to_config_yaml --makelinks # noqa
If using a specific GPU (e.g. device 2):
CUDA_VISIBLE_DEVICES=2 python -m train --config path_to_config_yaml --makelinks
The makelinks flag is needed only once to create symbolic links to the data.
To create and activate the conda environment for this repository:
conda env create --file adpkd-segmentation.yml
conda activate adpkd-segmentation
"""
# %%
import argparse
import json
import numpy as np
import os
import yaml
import random
from collections import OrderedDict
from matplotlib import pyplot as plt
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from catalyst.contrib.nn import Lookahead
from adpkd_segmentation.create_eval_configs import create_config
from adpkd_segmentation.config.config_utils import get_object_instance
from adpkd_segmentation.data.link_data import makelinks
from adpkd_segmentation.evaluate import validate
from adpkd_segmentation.utils.train_utils import (
load_model_data,
save_model_data,
)
from adpkd_segmentation.data.data_utils import tensor_dict_to_device
CHECKPOINTS = "checkpoints"
RESULTS = "results"
TB_LOGS = "tb_logs"
# %%
def get_losses_str(losses_and_metrics, tensors=True):
out = []
for k, v in losses_and_metrics.items():
if tensors:
v = v.item()
out.append("{}:{:.5f}".format(k, v))
return ", ".join(out)
# %%
def is_better(current, previous, metric_type):
if metric_type == "low":
return current < previous
elif metric_type == "high":
return current > previous
else:
raise Exception("unknown metric_type")
# %%
def save_val_metrics(metrics, results_dir, epoch, global_step):
with open(
"{}/val_results_ep_{}_gs_{}.json".format(
results_dir, epoch, global_step
),
"w",
) as fp:
json.dump(metrics, fp, indent=4)
# %%
def tb_log_metrics(writer, metrics, global_step):
for k, v in metrics.items():
writer.add_scalar(k, v, global_step)
# %%
def plot_image_from_batch(
writer, batch, prediction, target, global_step, idx=0
):
image = batch[idx]
pred_mask = prediction[idx]
mask = target[idx]
# plot each of the image channels as a separate grayscale image
# (C, 1, H, W) shape to treat each of the channels as a new image
image = image.unsqueeze(1)
# same approach for mask and prediction
mask = mask.unsqueeze(1)
pred_mask = pred_mask.unsqueeze(1)
writer.add_images("input_images", image, global_step, dataformats="NCHW")
writer.add_images("mask_channels", mask, global_step, dataformats="NCHW")
writer.add_images(
"prediction_channels", pred_mask, global_step, dataformats="NCHW"
)
# %%
def plot_fig_from_batch(
writer,
batch,
prediction,
target,
global_step,
idx=0,
title="fig: img_target_pred",
):
image = batch[idx][1] # middle channel
# single channel by default
mask = target[idx][0]
pred_mask = prediction[idx][0]
# TODO add standardizaton to convert all setups into single channel format
# currently supporting 1 and 2 channels, sigmoid based
num_channels = target.shape[1]
if num_channels == 2:
pred_mask = prediction[idx][0] + prediction[idx][1] # combine channels
mask = target[idx][0] + target[idx][1] # combine channels
image = image.detach().cpu()
mask = mask.detach().cpu()
pred_mask = pred_mask.detach().cpu()
f, axarr = plt.subplots(1, 3)
axarr[0].imshow(image, cmap="gray")
axarr[1].imshow(image, cmap="gray") # background for mask
axarr[1].imshow(mask, alpha=0.5)
axarr[2].imshow(image, cmap="gray") # background for mask
axarr[2].imshow(pred_mask, alpha=0.5)
writer.add_figure(title, f, global_step)
# %%
def train(config, config_save_name):
# reproducibility
seed = config.get("_SEED", 42)
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
model_config = config["_MODEL_CONFIG"]
train_dataloader_config = config["_TRAIN_DATALOADER_CONFIG"]
val_dataloader_config = config["_VAL_DATALOADER_CONFIG"]
loss_metric_config = config["_LOSSES_METRICS_CONFIG"]
experiment_dir = config["_EXPERIMENT_DIR"]
checkpoints_dir = os.path.join(experiment_dir, CHECKPOINTS)
results_dir = os.path.join(experiment_dir, RESULTS)
tb_logs_dir_train = os.path.join(experiment_dir, TB_LOGS, "train")
tb_logs_dir_val = os.path.join(experiment_dir, TB_LOGS, "val")
config_out = os.path.join(experiment_dir, config_save_name)
saved_checkpoint = config["_MODEL_CHECKPOINT"]
checkpoint_format = config["_NEW_CKP_FORMAT"]
loss_key = config["_OPTIMIZATION_LOSS"]
optim_config = config["_OPTIMIZER"]
lookahead_config = config["_LOOKAHEAD_OPTIM"]
lr_scheduler_config = config["_LR_SCHEDULER"]
experiment_data = config["_EXPERIMENT_DATA"]
val_plotting_dict = config.get("_VAL_PLOTTING")
model = get_object_instance(model_config)()
global_step = 0
if saved_checkpoint is not None:
global_step = load_model_data(
saved_checkpoint, model, new_format=checkpoint_format
)
train_loader = get_object_instance(train_dataloader_config)()
val_loader = get_object_instance(val_dataloader_config)()
print("Train dataset length: {}".format(len(train_loader.dataset)))
print("Validation dataset length: {}".format(len(val_loader.dataset)))
print(
"Valiation dataset patients:\n{}".format(val_loader.dataset.patients)
)
loss_metric = get_object_instance(loss_metric_config)()
optimizer_getter = get_object_instance(optim_config)
lr_scheduler_getter = get_object_instance(lr_scheduler_config)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
os.makedirs(checkpoints_dir)
os.makedirs(results_dir)
os.makedirs(tb_logs_dir_train)
os.makedirs(tb_logs_dir_val)
with open(config_out, "w") as f:
yaml.dump(config, f, default_flow_style=False)
# create configs for val and test
val_config, val_out_dir = create_config(config, "val")
test_config, test_out_dir = create_config(config, "test")
os.makedirs(val_out_dir)
os.makedirs(test_out_dir)
val_path = os.path.join(val_out_dir, "val.yaml")
print("Creating evaluation config for val: {}".format(val_path))
with open(val_path, "w") as f:
yaml.dump(val_config, f, default_flow_style=False)
test_path = os.path.join(test_out_dir, "test.yaml")
print("Creating evaluation config for test: {}".format(test_path))
with open(test_path, "w") as f:
yaml.dump(test_config, f, default_flow_style=False)
train_writer = SummaryWriter(tb_logs_dir_train)
val_writer = SummaryWriter(tb_logs_dir_val)
model_params = model.parameters()
if config.get("_MODEL_PARAM_PREP") is not None:
model_prep = get_object_instance(config.get("_MODEL_PARAM_PREP"))
model_params = model_prep(model)
optimizer = optimizer_getter(model_params)
if lookahead_config["use_lookahead"]:
optimizer = Lookahead(optimizer, **lookahead_config["params"])
lr_scheduler = lr_scheduler_getter(optimizer)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model = model.to(device)
model.train()
num_epochs = experiment_data["num_epochs"]
batch_log_interval = experiment_data["batch_log_interval"]
# "low" or "high"
best_metric_type = experiment_data["best_metric_type"]
saving_metric = experiment_data["saving_metric"]
previous = float("inf") if best_metric_type == "low" else float("-inf")
output_example_idx = (
hasattr(train_loader.dataset, "output_idx")
and train_loader.dataset.output_idx
)
for epoch in range(num_epochs):
for output in train_loader:
if output_example_idx:
x_batch, y_batch, index = output
extra_dict = train_loader.dataset.get_extra_dict(index)
extra_dict = tensor_dict_to_device(extra_dict, device)
else:
x_batch, y_batch = output
extra_dict = None
optimizer.zero_grad()
x_batch = x_batch.to(device)
y_batch = y_batch.to(device)
y_batch_hat = model(x_batch)
losses_and_metrics = loss_metric(y_batch_hat, y_batch, extra_dict)
loss = losses_and_metrics[loss_key]
loss.backward()
optimizer.step()
global_step += 1
if global_step % batch_log_interval == 0:
print("TRAIN:", get_losses_str(losses_and_metrics))
tb_log_metrics(train_writer, losses_and_metrics, global_step)
# TODO: add support for softmax processing
prediction = torch.sigmoid(y_batch_hat)
plot_fig_from_batch(
train_writer, x_batch, prediction, y_batch, global_step,
)
# lr change after each batch
if lr_scheduler_getter.step_type == "after_batch":
lr_scheduler.step()
# done with one epoch
# let's validate (use code from the validation script)
model.eval()
all_losses_and_metrics = validate(
val_loader,
model,
loss_metric,
device,
plotting_func=plot_fig_from_batch,
plotting_dict=val_plotting_dict,
writer=val_writer,
global_step=global_step,
val_metric_to_check=saving_metric,
output_losses_list=False,
)
print("Validation results for epoch {}".format(epoch))
print("VAL:", get_losses_str(all_losses_and_metrics, tensors=False))
model.train()
current = all_losses_and_metrics[saving_metric]
if is_better(current, previous, best_metric_type):
print(
"Validation metric improved "
"at the end of epoch {}".format(epoch)
)
previous = current
save_val_metrics(
all_losses_and_metrics, results_dir, epoch, global_step
)
out_path = os.path.join(checkpoints_dir, "best_val_checkpoint.pth")
save_model_data(out_path, model, global_step)
tb_log_metrics(val_writer, all_losses_and_metrics, global_step)
# learning rate schedule step at the end of epoch
if lr_scheduler_getter.step_type != "after_batch":
if lr_scheduler_getter.step_type == "use_val":
lr_scheduler.step(all_losses_and_metrics[loss_key])
elif lr_scheduler_getter.step_type == "use_epoch":
lr_scheduler.step(epoch)
else:
lr_scheduler.step()
# plot distinct learning rates in order they appear in the optimizer
lr_dict = OrderedDict()
for param_group in optimizer.param_groups:
lr = param_group.get("lr")
lr_dict[lr] = None
for idx, lr in enumerate(lr_dict):
tb_log_metrics(val_writer, {"lr_{}".format(idx): lr}, global_step)
tb_log_metrics(
train_writer, {"lr_{}".format(idx): lr}, global_step
)
train_writer.close()
val_writer.close()
# %%
def quick_check(run_makelinks=False):
if run_makelinks:
makelinks()
path = "./config/examples/train_example.yaml"
with open(path, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
train(config)
# %%
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", help="YAML config path", type=str, required=True
)
parser.add_argument(
"--makelinks", help="Make data links", action="store_true"
)
args = parser.parse_args()
with open(args.config, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
if args.makelinks:
makelinks()
config_save_name = os.path.basename(args.config)
train(config, config_save_name)