[637b40]: / adpkd_segmentation / inference / add_ensemble.py

Download this file

159 lines (145 with data), 5.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import yaml
from argparse import ArgumentParser
import os
from pathlib import Path
import nibabel as nib
from inference import run_inference
from ensemble_utils import get_scan, grab_organ_dirs, addition_ensemble
# Parser Setup
parser = ArgumentParser()
parser.add_argument(
"-i",
"--inference_path",
type=str,
help="path to input dicom data (replaces path in config file)",
default=None,
)
parser.add_argument(
"-o",
"--output_path",
type=str,
help="path to output location",
default=None,
)
parser.add_argument(
"-c",
"--config_path",
type=str,
help="Path that points to the desired configuration file",
default="adpkd_segmentation/inference/add_ensemble_config.yml",
)
def run_addition_ensemble(
input_path=None,
output_path=None,
config_path="adpkd_segmentation/inference/add_ensemble_config.yml",
):
# Load configuration to dictionary
print("Loading system and pipeline configuration...")
with open(config_path, "r") as id_system:
try:
system_config = yaml.load(id_system, Loader=yaml.FullLoader)
# Individual Organ inference
pred_load_dir = []
add_organ_color = list(system_config["add_organ_color"].values())
add_overlap = list(system_config["add_overlap"].values())
overlap_recolor = list(system_config["overlap_recolor"].values())
orig_color = list(system_config["orig_color"].values())
view_color = list(system_config["view_color"].values())
for idx_organ, name_organ in enumerate(
system_config["organ_name"]
):
print(f"Run {idx_organ+1}: {name_organ} inference\n")
save_path = os.path.join(output_path, name_organ)
config_path = system_config["model_dir"]["T2"]["Axial"][
idx_organ
]
saved_inference = Path(save_path) / system_config["svd_inf"]
saved_figs = Path(save_path) / system_config["svd_figs"]
run_inference(
config_path=config_path,
inference_path=input_path,
saved_inference=saved_inference,
saved_figs=saved_figs,
)
pred_load_dir.append(Path(save_path))
print(name_organ + " inference complete")
#
# Create ensemble save path
temp_name = ""
if (
len(system_config["organ_name"])
<= system_config["max_organ_title"]
):
for name in system_config["organ_name"]:
temp_name += f"_{name}"
else:
temp_name = "_organs"
combined_folder_name = f"Addition_Ensemble{temp_name}"
combine_path = Path(output_path) / combined_folder_name
# Addition Ensemble
print("Combining the organ segmentations...")
scan_list = list(
pred_load_dir[0].glob(f'**/*{system_config["pred_vol"]}')
)
mask_load_dict = grab_organ_dirs(
organ_paths=pred_load_dir,
ensemble_mode=system_config["mode"],
organ_name=system_config["organ_name"],
pred_filename=system_config["pred_vol"],
)
for idScn, scan in enumerate(scan_list):
scan_folder = get_scan(
intermediate_folder=system_config["youngest_child"],
dir=scan,
)
print(f"Combining for sequence {scan_folder}")
comb_mask = addition_ensemble(
scan_iter=idScn,
mask_directory_dict=mask_load_dict,
organ_name=system_config["organ_name"],
add_organ_color=add_organ_color,
overlap_colors=add_overlap,
adjudicated_colors=overlap_recolor,
old_organ_colors=orig_color,
new_organ_colors=view_color,
selected_kidney_side=system_config["kidney_side"],
kidney_addition_color=system_config[
"kidney_addition_color"
],
kidney_viewer_color=system_config[
"right_kidney_viewer_color"
],
)
# Save the output
save_path = combine_path / scan_folder
save_path.mkdir(parents=True, exist_ok=True)
#
dicom_parent, _ = os.path.split(scan)
dicom_nii_dir = Path(dicom_parent) / system_config["dicom_vol"]
mri_nifti = nib.load(dicom_nii_dir)
nifti_affine = mri_nifti.affine
nifti_header = mri_nifti.header.copy()
combined_pred_vol = nib.Nifti1Image(
comb_mask, affine=nifti_affine, header=nifti_header
)
print("Saving...")
nib.save(mri_nifti, save_path / system_config["dicom_vol"])
nib.save(
combined_pred_vol,
save_path / system_config["combined_pred_filename"],
)
except yaml.YAMLError as exc:
print(exc)
if __name__ == "__main__":
args = parser.parse_args()
inference_path = args.inference_path
output_path = args.output_path
config_path = args.config_path
# Prep the output path
if inference_path is not None:
inf_path = inference_path
if output_path is not None:
out_path = output_path
run_addition_ensemble(
input_path=inf_path, output_path=out_path, config_path=config_path
)