[637b40]: / adpkd_segmentation / datasets / datasets.py

Download this file

489 lines (401 with data), 14.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import json
import numpy as np
import torch
from pathlib import Path
import pandas as pd
import pydicom
from ast import literal_eval
from adpkd_segmentation.data.data_utils import (
get_labeled,
get_y_Path,
int16_to_uint8,
make_dcmdicts,
path_2dcm_int16,
path_2label,
TKV_update,
)
from adpkd_segmentation.data.data_utils import (
KIDNEY_PIXELS,
STUDY_TKV,
VOXEL_VOLUME,
)
from adpkd_segmentation.datasets.filters import PatientFiltering
class SegmentationDataset(torch.utils.data.Dataset):
"""Some information about SegmentationDataset"""
def __init__(
self,
label2mask,
dcm2attribs,
patient2dcm,
patient_IDS=None,
augmentation=None,
smp_preprocessing=None,
normalization=None,
output_idx=False,
attrib_types=None,
):
super().__init__()
self.label2mask = label2mask
self.dcm2attribs = dcm2attribs
self.pt2dcm = patient2dcm
self.patient_IDS = patient_IDS
self.augmentation = augmentation
self.smp_preprocessing = smp_preprocessing
self.normalization = normalization
self.output_idx = output_idx
self.attrib_types = attrib_types
# store some attributes as PyTorch tensors
if self.attrib_types is None:
self.attrib_types = {
STUDY_TKV: "float32",
KIDNEY_PIXELS: "float32",
VOXEL_VOLUME: "float32",
}
self.patients = list(patient2dcm.keys())
# kept for compatibility with previous experiments
# following patient order in patient_IDS
if patient_IDS is not None:
self.patients = patient_IDS
self.dcm_paths = []
for p in self.patients:
self.dcm_paths.extend(patient2dcm[p])
self.label_paths = [get_y_Path(dcm) for dcm in self.dcm_paths]
# study_id to TKV and TKV for each dcm
self.studies, self.dcm2attribs = TKV_update(dcm2attribs)
# storring attrib types as tensors
self.tensor_dict = self.prepare_tensor_dict(self.attrib_types)
def __getitem__(self, index):
if isinstance(index, slice):
return [self[ii] for ii in range(*index.indices(len(self)))]
# numpy int16, (H, W)
im_path = self.dcm_paths[index]
image = path_2dcm_int16(im_path)
# image local scaling by default to convert to uint8
if self.normalization is None:
image = int16_to_uint8(image)
else:
image = self.normalization(image, self.dcm2attribs[im_path])
label = path_2label(self.label_paths[index])
# numpy uint8, one hot encoded (C, H, W)
mask = self.label2mask(label[np.newaxis, ...])
if self.augmentation is not None:
# requires (H, W, C) or (H, W)
mask = mask.transpose(1, 2, 0)
sample = self.augmentation(image=image, mask=mask)
image, mask = sample["image"], sample["mask"]
# get back to (C, H, W)
mask = mask.transpose(2, 0, 1)
# convert to float
image = (image / 255).astype(np.float32)
mask = mask.astype(np.float32)
# smp preprocessing requires (H, W, 3)
if self.smp_preprocessing is not None:
image = np.repeat(image[..., np.newaxis], 3, axis=-1)
image = self.smp_preprocessing(image).astype(np.float32)
# get back to (3, H, W)
image = image.transpose(2, 0, 1)
else:
# stack image to (3, H, W)
image = np.repeat(image[np.newaxis, ...], 3, axis=0)
if self.output_idx:
return image, mask, index
return image, mask
def __len__(self):
return len(self.dcm_paths)
def get_verbose(self, index):
"""returns more details than __getitem__()
Args:
index (int): index in dataset
Returns:
tuple: sample, dcm_path, attributes dict
"""
sample = self[index]
dcm_path = self.dcm_paths[index]
attribs = self.dcm2attribs[dcm_path]
return sample, dcm_path, attribs
def get_extra_dict(self, batch_of_idx):
return {k: v[batch_of_idx] for k, v in self.tensor_dict.items()}
def prepare_tensor_dict(self, attrib_types):
tensor_dict = {}
for k, v in attrib_types.items():
tensor_dict[k] = torch.zeros(
self.__len__(), dtype=getattr(torch, v)
)
for idx, _ in enumerate(self):
dcm_path = self.dcm_paths[idx]
attribs = self.dcm2attribs[dcm_path]
for k, v in tensor_dict.items():
v[idx] = attribs[k]
return tensor_dict
class DatasetGetter:
"""Create SegmentationDataset"""
def __init__(
self,
splitter,
splitter_key,
label2mask,
augmentation=None,
smp_preprocessing=None,
filters=None,
normalization=None,
output_idx=False,
attrib_types=None,
):
super().__init__()
self.splitter = splitter
self.splitter_key = splitter_key
self.label2mask = label2mask
self.augmentation = augmentation
self.smp_preprocessing = smp_preprocessing
self.filters = filters
self.normalization = normalization
self.output_idx = output_idx
self.attrib_types = attrib_types
dcms_paths = sorted(get_labeled())
print(
"The number of images before splitting and filtering: {}".format(
len(dcms_paths)
)
)
dcm2attribs, patient2dcm = make_dcmdicts(tuple(dcms_paths))
if filters is not None:
dcm2attribs, patient2dcm = filters(dcm2attribs, patient2dcm)
self.all_patient_IDS = list(patient2dcm.keys())
# train, val, or test
self.patient_IDS = self.splitter(self.all_patient_IDS)[
self.splitter_key
]
patient_filter = PatientFiltering(self.patient_IDS)
self.dcm2attribs, self.patient2dcm = patient_filter(
dcm2attribs, patient2dcm
)
if self.normalization is not None:
self.normalization.update_dcm2attribs(self.dcm2attribs)
def __call__(self):
return SegmentationDataset(
label2mask=self.label2mask,
dcm2attribs=self.dcm2attribs,
patient2dcm=self.patient2dcm,
patient_IDS=self.patient_IDS,
augmentation=self.augmentation,
smp_preprocessing=self.smp_preprocessing,
normalization=self.normalization,
output_idx=self.output_idx,
attrib_types=self.attrib_types,
)
class JsonDatasetGetter:
"""Get the dataset from a prepared patient ID split"""
def __init__(
self,
json_path,
splitter_key,
label2mask,
augmentation=None,
smp_preprocessing=None,
normalization=None,
output_idx=False,
attrib_types=None,
):
super().__init__()
self.label2mask = label2mask
self.augmentation = augmentation
self.smp_preprocessing = smp_preprocessing
self.normalization = normalization
self.output_idx = output_idx
self.attrib_types = attrib_types
dcms_paths = sorted(get_labeled())
print(
"The number of images before splitting and filtering: {}".format(
len(dcms_paths)
)
)
dcm2attribs, patient2dcm = make_dcmdicts(tuple(dcms_paths))
print("Loading ", json_path)
with open(json_path, "r") as f:
dataset_split = json.load(f)
self.patient_IDS = dataset_split[splitter_key]
# filter info dicts to correpsond to patient_IDS
patient_filter = PatientFiltering(self.patient_IDS)
self.dcm2attribs, self.patient2dcm = patient_filter(
dcm2attribs, patient2dcm
)
if self.normalization is not None:
self.normalization.update_dcm2attribs(self.dcm2attribs)
def __call__(self):
return SegmentationDataset(
label2mask=self.label2mask,
dcm2attribs=self.dcm2attribs,
patient2dcm=self.patient2dcm,
patient_IDS=self.patient_IDS,
augmentation=self.augmentation,
smp_preprocessing=self.smp_preprocessing,
normalization=self.normalization,
output_idx=self.output_idx,
attrib_types=self.attrib_types,
)
class InferenceDataset(torch.utils.data.Dataset):
"""Some information about SegmentationDataset"""
def __init__(
self,
dcm2attribs,
patient2dcm,
augmentation=None,
smp_preprocessing=None,
normalization=None,
output_idx=False,
attrib_types=None,
):
super().__init__()
self.dcm2attribs = dcm2attribs
self.pt2dcm = patient2dcm
self.augmentation = augmentation
self.smp_preprocessing = smp_preprocessing
self.normalization = normalization
self.output_idx = output_idx
self.attrib_types = attrib_types
self.patients = list(patient2dcm.keys())
self.dcm_paths = []
for p in self.patients:
self.dcm_paths.extend(patient2dcm[p])
# Sorts Studies by Z axis
studies = [
pydicom.dcmread(path).SeriesDescription for path in self.dcm_paths
]
folders = [path.parent.name for path in self.dcm_paths]
patients = [pydicom.dcmread(path).PatientID for path in self.dcm_paths]
x_dims = [pydicom.dcmread(path).Rows for path in self.dcm_paths]
y_dims = [pydicom.dcmread(path).Columns for path in self.dcm_paths]
z_pos = [
literal_eval(str(pydicom.dcmread(path).ImagePositionPatient))[2]
for path in self.dcm_paths
]
acc_nums = [
pydicom.dcmread(path).AccessionNumber for path in self.dcm_paths
]
ser_nums = [
pydicom.dcmread(path).SeriesNumber for path in self.dcm_paths
]
data = {
"dcm_paths": self.dcm_paths,
"folders": folders,
"studies": studies,
"patients": patients,
"x_dims": x_dims,
"y_dims": y_dims,
"z_pos": z_pos,
"acc_nums": acc_nums,
"ser_nums": ser_nums,
}
group_keys = [
"folders",
"studies",
"patients",
"x_dims",
"y_dims",
"acc_nums",
"ser_nums",
]
dataset = pd.DataFrame.from_dict(data)
dataset["slice_pos"] = ""
grouped_dataset = dataset.groupby(group_keys)
for (name, group) in grouped_dataset:
sort_key = "z_pos"
# handle missing slice position with filename
if group[sort_key].isna().any():
sort_key = "dcm_paths"
zs = list(group[sort_key])
sorted_idxs = np.argsort(zs)
slice_map = {
zs[idx]: pos for idx, pos in zip(sorted_idxs, range(len(zs)))
}
zs_slice_pos = group[sort_key].map(slice_map)
for i in group.index:
dataset.at[i, "slice_pos"] = zs_slice_pos.get(i)
grouped_dataset = dataset.groupby(group_keys)
for (name, group) in grouped_dataset:
group.sort_values(by="slice_pos", inplace=True)
self.df = dataset
self.dcm_paths = list(dataset["dcm_paths"])
def __getitem__(self, index):
if isinstance(index, slice):
return [self[ii] for ii in range(*index.indices(len(self)))]
# numpy int16, (H, W)
im_path = self.dcm_paths[index]
image = path_2dcm_int16(im_path)
# image local scaling by default to convert to uint8
if self.normalization is None:
image = int16_to_uint8(image)
else:
image = self.normalization(image, self.dcm2attribs[im_path])
if self.augmentation is not None:
sample = self.augmentation(image=image)
image = sample["image"]
# convert to float
image = (image / 255).astype(np.float32)
# smp preprocessing requires (H, W, 3)
if self.smp_preprocessing is not None:
image = np.repeat(image[..., np.newaxis], 3, axis=-1)
image = self.smp_preprocessing(image).astype(np.float32)
# get back to (3, H, W)
image = image.transpose(2, 0, 1)
else:
# stack image to (3, H, W)
image = np.repeat(image[np.newaxis, ...], 3, axis=0)
if self.output_idx:
return image, index
return image
def __len__(self):
return len(self.dcm_paths)
def get_verbose(self, index):
"""returns more details than __getitem__()
Args:
index (int): index in dataset
Returns:
tuple: sample, dcm_path, attributes dict
"""
sample = self[index]
dcm_path = self.dcm_paths[index]
attribs = self.dcm2attribs[dcm_path]
return sample, dcm_path, attribs
class InferenceDatasetGetter:
"""Get the dataset from a prepared patient ID split"""
def __init__(
self,
inference_path,
augmentation=None,
smp_preprocessing=None,
normalization=None,
output_idx=False,
attrib_types=None,
):
super().__init__()
self.augmentation = augmentation
self.smp_preprocessing = smp_preprocessing
self.normalization = normalization
self.output_idx = output_idx
self.attrib_types = attrib_types
self.inference_path = Path(inference_path)
all_paths = set(self.inference_path.glob("**/*"))
dcms_paths = []
for path in all_paths:
if path.is_file():
try:
pydicom.filereader.dcmread(path, stop_before_pixels=True)
dcms_paths.append(path)
except pydicom.errors.InvalidDicomError:
continue
self.dcm2attribs, self.patient2dcm = make_dcmdicts(
tuple(dcms_paths), label_status=False, WCM=False
)
if self.normalization is not None:
self.normalization.update_dcm2attribs(self.dcm2attribs)
def __call__(self):
return InferenceDataset(
dcm2attribs=self.dcm2attribs,
patient2dcm=self.patient2dcm,
augmentation=self.augmentation,
smp_preprocessing=self.smp_preprocessing,
normalization=self.normalization,
output_idx=self.output_idx,
attrib_types=self.attrib_types,
)