|
a |
|
b/adpkd_segmentation/evaluate_patients.py |
|
|
1 |
""" |
|
|
2 |
Model evaluation script for TKV |
|
|
3 |
|
|
|
4 |
python -m adpkd_segmentation.evaluate_patients |
|
|
5 |
--config path_to_config_yaml --makelinks --out_path output_csv_path |
|
|
6 |
|
|
|
7 |
If using a specific GPU, e.g. device 2, prepend the command with CUDA_VISIBLE_DEVICES=2 # noqa |
|
|
8 |
|
|
|
9 |
The makelinks flag is needed only once to create symbolic links to the data. |
|
|
10 |
""" |
|
|
11 |
|
|
|
12 |
# %% |
|
|
13 |
from collections import OrderedDict, defaultdict |
|
|
14 |
import argparse |
|
|
15 |
|
|
|
16 |
import yaml |
|
|
17 |
import pandas as pd |
|
|
18 |
|
|
|
19 |
import torch |
|
|
20 |
|
|
|
21 |
from adpkd_segmentation.config.config_utils import get_object_instance |
|
|
22 |
from adpkd_segmentation.data.link_data import makelinks |
|
|
23 |
from adpkd_segmentation.utils.train_utils import load_model_data |
|
|
24 |
from adpkd_segmentation.utils.losses import SigmoidBinarize |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
# %% |
|
|
28 |
def calculate_dcm_voxel_volumes( |
|
|
29 |
dataloader, model, device, binarize_func, |
|
|
30 |
): |
|
|
31 |
num_examples = 0 |
|
|
32 |
dataset = dataloader.dataset |
|
|
33 |
updated_dcm2attribs = {} |
|
|
34 |
|
|
|
35 |
output_example_idx = ( |
|
|
36 |
hasattr(dataloader.dataset, "output_idx") |
|
|
37 |
and dataloader.dataset.output_idx |
|
|
38 |
) |
|
|
39 |
|
|
|
40 |
for batch_idx, output in enumerate(dataloader): |
|
|
41 |
if output_example_idx: |
|
|
42 |
x_batch, y_batch, _ = output |
|
|
43 |
else: |
|
|
44 |
x_batch, y_batch = output |
|
|
45 |
|
|
|
46 |
x_batch = x_batch.to(device) |
|
|
47 |
y_batch = y_batch.to(device) |
|
|
48 |
batch_size = y_batch.size(0) |
|
|
49 |
num_examples += batch_size |
|
|
50 |
with torch.no_grad(): |
|
|
51 |
y_batch_hat = model(x_batch) |
|
|
52 |
y_batch_hat_binary = binarize_func(y_batch_hat) |
|
|
53 |
start_idx = num_examples - batch_size |
|
|
54 |
end_idx = num_examples |
|
|
55 |
|
|
|
56 |
for inbatch_idx, dataset_idx in enumerate( |
|
|
57 |
range(start_idx, end_idx) |
|
|
58 |
): |
|
|
59 |
# calculate TKV and TKV inputs for each dcm |
|
|
60 |
# TODO: |
|
|
61 |
# support 3 channel setups where ones could mean background |
|
|
62 |
# needs mask standardization to single channel |
|
|
63 |
_, dcm_path, attribs = dataset.get_verbose(dataset_idx) |
|
|
64 |
attribs["pred_kidney_pixels"] = torch.sum( |
|
|
65 |
y_batch_hat_binary[inbatch_idx] > 0 |
|
|
66 |
).item() |
|
|
67 |
attribs["ground_kidney_pixels"] = torch.sum( |
|
|
68 |
y_batch[inbatch_idx] > 0 |
|
|
69 |
).item() |
|
|
70 |
|
|
|
71 |
# TODO: Clean up method of accessing Resize transform |
|
|
72 |
attribs["transform_resize_dim"] = ( |
|
|
73 |
dataloader.dataset.augmentation[0].height, |
|
|
74 |
dataloader.dataset.augmentation[0].width, |
|
|
75 |
) |
|
|
76 |
|
|
|
77 |
# scale factor takes into account the difference |
|
|
78 |
# between the original image/mask size and the size |
|
|
79 |
# after mask & prediction resizing |
|
|
80 |
scale_factor = (attribs["dim"][0] ** 2) / ( |
|
|
81 |
attribs["transform_resize_dim"][0] ** 2 |
|
|
82 |
) |
|
|
83 |
attribs["Vol_GT"] = ( |
|
|
84 |
scale_factor |
|
|
85 |
* attribs["vox_vol"] |
|
|
86 |
* attribs["ground_kidney_pixels"] |
|
|
87 |
) |
|
|
88 |
attribs["Vol_Pred"] = ( |
|
|
89 |
scale_factor |
|
|
90 |
* attribs["vox_vol"] |
|
|
91 |
* attribs["pred_kidney_pixels"] |
|
|
92 |
) |
|
|
93 |
|
|
|
94 |
updated_dcm2attribs[dcm_path] = attribs |
|
|
95 |
|
|
|
96 |
return updated_dcm2attribs |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
# %% |
|
|
100 |
|
|
|
101 |
def visualize_performance( |
|
|
102 |
dataloader, model, device, binarize_func, |
|
|
103 |
): |
|
|
104 |
dataset = dataloader.dataset |
|
|
105 |
output_example_idx = ( |
|
|
106 |
hasattr(dataloader.dataset, "output_idx") |
|
|
107 |
and dataloader.dataset.output_idx |
|
|
108 |
) |
|
|
109 |
|
|
|
110 |
for batch_idx, output in enumerate(dataloader): |
|
|
111 |
if output_example_idx: |
|
|
112 |
x_batch, y_batch, _ = output |
|
|
113 |
else: |
|
|
114 |
x_batch, y_batch = output |
|
|
115 |
|
|
|
116 |
x_batch = x_batch.to(device) |
|
|
117 |
y_batch = y_batch.to(device) |
|
|
118 |
batch_size = y_batch.size(0) |
|
|
119 |
num_examples += batch_size |
|
|
120 |
with torch.no_grad(): |
|
|
121 |
_, dcm_path, attribs = dataset.get_verbose(batch_size * batch_idx) |
|
|
122 |
|
|
|
123 |
y_batch_hat = model(x_batch) |
|
|
124 |
y_batch_hat_binary = binarize_func(y_batch_hat) |
|
|
125 |
start_idx = batch_size * batch_idx |
|
|
126 |
end_idx = batch_size * (1 + batch_idx) |
|
|
127 |
|
|
|
128 |
# for inbatch_idx, dataset_idx in enumerate( |
|
|
129 |
# range(start_idx, end_idx) |
|
|
130 |
# ): |
|
|
131 |
# _, dcm_path, attribs = dataset.get_verbose(dataset_idx) |
|
|
132 |
|
|
|
133 |
# updated_dcm2attribs[dcm_path] = attribs |
|
|
134 |
|
|
|
135 |
|
|
|
136 |
# %% |
|
|
137 |
def evaluate(config): |
|
|
138 |
model_config = config["_MODEL_CONFIG"] |
|
|
139 |
loader_to_eval = config["_LOADER_TO_EVAL"] |
|
|
140 |
dataloader_config = config[loader_to_eval] |
|
|
141 |
saved_checkpoint = config["_MODEL_CHECKPOINT"] |
|
|
142 |
checkpoint_format = config["_NEW_CKP_FORMAT"] |
|
|
143 |
|
|
|
144 |
model = get_object_instance(model_config)() |
|
|
145 |
if saved_checkpoint is not None: |
|
|
146 |
load_model_data(saved_checkpoint, model, new_format=checkpoint_format) |
|
|
147 |
|
|
|
148 |
dataloader = get_object_instance(dataloader_config)() |
|
|
149 |
|
|
|
150 |
# TODO: support other metrics as needed |
|
|
151 |
binarize_func = SigmoidBinarize(thresholds=[0.5]) |
|
|
152 |
|
|
|
153 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
154 |
model = model.to(device) |
|
|
155 |
model.eval() |
|
|
156 |
|
|
|
157 |
updated_dcm2attribs = calculate_dcm_voxel_volumes( |
|
|
158 |
dataloader, model, device, binarize_func |
|
|
159 |
) |
|
|
160 |
|
|
|
161 |
return updated_dcm2attribs |
|
|
162 |
|
|
|
163 |
|
|
|
164 |
# %% |
|
|
165 |
def calculate_TKVs(config_path, run_makelinks=False, output=None): |
|
|
166 |
if run_makelinks: |
|
|
167 |
makelinks() |
|
|
168 |
with open(config_path, "r") as f: |
|
|
169 |
config = yaml.load(f, Loader=yaml.FullLoader) |
|
|
170 |
|
|
|
171 |
# val or test |
|
|
172 |
split = config["_LOADER_TO_EVAL"].split("_")[1].lower() |
|
|
173 |
|
|
|
174 |
dcm2attrib = evaluate(config) |
|
|
175 |
|
|
|
176 |
patient_MR_TKV = defaultdict(float) |
|
|
177 |
TKV_data = OrderedDict() |
|
|
178 |
|
|
|
179 |
for key, value in dcm2attrib.items(): |
|
|
180 |
patient_MR = value["patient"] + value["MR"] |
|
|
181 |
patient_MR_TKV[(patient_MR, "GT")] += value["Vol_GT"] |
|
|
182 |
patient_MR_TKV[(patient_MR, "Pred")] += value["Vol_Pred"] |
|
|
183 |
|
|
|
184 |
for key, value in dcm2attrib.items(): |
|
|
185 |
patient_MR = value["patient"] + value["MR"] |
|
|
186 |
|
|
|
187 |
if patient_MR not in TKV_data: |
|
|
188 |
|
|
|
189 |
summary = { |
|
|
190 |
"TKV_GT": patient_MR_TKV[(patient_MR, "GT")], |
|
|
191 |
"TKV_Pred": patient_MR_TKV[(patient_MR, "Pred")], |
|
|
192 |
"sequence": value["seq"], |
|
|
193 |
"split": split, |
|
|
194 |
} |
|
|
195 |
|
|
|
196 |
TKV_data[patient_MR] = summary |
|
|
197 |
|
|
|
198 |
df = pd.DataFrame(TKV_data).transpose() |
|
|
199 |
|
|
|
200 |
if output is not None: |
|
|
201 |
df.to_csv(output) |
|
|
202 |
|
|
|
203 |
return TKV_data |
|
|
204 |
|
|
|
205 |
|
|
|
206 |
# %% |
|
|
207 |
if __name__ == "__main__": |
|
|
208 |
parser = argparse.ArgumentParser() |
|
|
209 |
parser.add_argument( |
|
|
210 |
"--config", help="YAML config path", type=str, required=True |
|
|
211 |
) |
|
|
212 |
parser.add_argument( |
|
|
213 |
"--makelinks", help="Make data links", action="store_true" |
|
|
214 |
) |
|
|
215 |
parser.add_argument("--out_path", help="Path to output csv", required=True) |
|
|
216 |
|
|
|
217 |
args = parser.parse_args() |
|
|
218 |
calculate_TKVs(args.config, args.makelinks, args.out_path) |