from sklearn.model_selection import train_test_split
class GenSplit:
def __init__(self, train=0.7, val=0.15, test=0.15, seed=1):
super().__init__()
self.train = train
self.val = val
self.test = test
self.seed = seed
def __call__(self, all_idxs):
# split train from validation-test
train_idxs, test_val_idxs = train_test_split(
all_idxs, test_size=(self.val + self.test), random_state=self.seed
)
# split validation from test
val_idxs, test_idxs = train_test_split(
test_val_idxs,
test_size=(self.test / (self.test + self.val)),
random_state=self.seed,
)
self.train_idxs = train_idxs
self.val_idxs = val_idxs
self.test_idxs = test_idxs
print(
"The number of (filtered) train patients: {}".format(
len(self.train_idxs)
)
)
print(
"The number of (filtered) validation patients: {}".format(
len(self.val_idxs)
)
)
print(
"The number of (filtered) test patients: {}".format(
len(self.test_idxs)
)
)
return {
"train": self.train_idxs,
"val": self.val_idxs,
"test": self.test_idxs,
}