import numpy
import tensorflow as tf
# Functions
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def write_tf_record(images, labels, sets, filename):
writer = tf.python_io.TFRecordWriter(filename)
for i in range(0, images.shape[0]):
img = images[i]
label = labels[i]
set = sets[i]
img_raw = img.tostring()
label_raw = label.tostring()
set_raw = set.tostring()
example = tf.train.Example(features=tf.train.Features(feature={
'height': _int64_feature(img.shape[0]),
'width': _int64_feature(img.shape[1]),
'image': _bytes_feature(img_raw),
'label': _bytes_feature(label_raw),
'set': _bytes_feature(set_raw)})
)
writer.write(example.SerializeToString())
writer.close()
def read_tf_record(filename):
images = []
labels = []
sets = []
record_iterator = tf.python_io.tf_record_iterator(path=filename)
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
height = int(example.features.feature["height"].int64_list.value[0])
width = int(example.features.feature["width"].int64_list.value[0])
img_string = (example.features.feature["image"].bytes_list.value[0])
label_string = (example.features.feature["label"].bytes_list.value[0])
set_string = (example.features.feature["set"].bytes_list.value[0])
images.append(numpy.fromstring(img_string, dtype=numpy.float32).reshape(height, width, -1))
labels.append(numpy.fromstring(label_string, dtype=numpy.float32).reshape(height, width, -1))
sets.append(numpy.fromstring(set_string, dtype=numpy.int32))
return numpy.array(images), numpy.array(labels), numpy.array(sets)