|
a |
|
b/utils/NII.py |
|
|
1 |
import copy |
|
|
2 |
|
|
|
3 |
import SimpleITK as sitk |
|
|
4 |
import matplotlib.pyplot as plt |
|
|
5 |
import numpy as np |
|
|
6 |
|
|
|
7 |
|
|
|
8 |
class NII: |
|
|
9 |
VIEW_MAPPING = {'saggital': 0, 'coronal': 1, 'axial': 2} |
|
|
10 |
|
|
|
11 |
def __init__(self, filename): |
|
|
12 |
self.nii = sitk.ReadImage(filename, sitk.sitkFloat64) |
|
|
13 |
self._update_attributes() |
|
|
14 |
|
|
|
15 |
# Remove NaNs |
|
|
16 |
self.data[np.isnan(self.data)] = 0 |
|
|
17 |
|
|
|
18 |
def update_sitk(self): |
|
|
19 |
self.nii = sitk.GetImageFromArray(self.data) |
|
|
20 |
self.nii.SetOrigin(self.origin) |
|
|
21 |
self.nii.SetDirection(self.direction) |
|
|
22 |
|
|
|
23 |
def _update_attributes(self): |
|
|
24 |
self.origin = self.nii.GetOrigin() |
|
|
25 |
self.direction = self.nii.GetDirection() |
|
|
26 |
self.data = sitk.GetArrayFromImage(self.nii) |
|
|
27 |
|
|
|
28 |
def save(self, filename): |
|
|
29 |
sitk.WriteImage(self.nii, filename) |
|
|
30 |
|
|
|
31 |
@property |
|
|
32 |
def num_saggital_slices(self): |
|
|
33 |
return self.data.shape[NII.VIEW_MAPPING['saggital']] |
|
|
34 |
|
|
|
35 |
@property |
|
|
36 |
def num_coronal_slices(self): |
|
|
37 |
return self.data.shape[NII.VIEW_MAPPING['coronal']] |
|
|
38 |
|
|
|
39 |
@property |
|
|
40 |
def num_axial_slices(self): |
|
|
41 |
return self.data.shape[NII.VIEW_MAPPING['axial']] |
|
|
42 |
|
|
|
43 |
@staticmethod |
|
|
44 |
def set_view_mapping(mapping): |
|
|
45 |
NII.VIEW_MAPPING = mapping |
|
|
46 |
|
|
|
47 |
def shape(self): |
|
|
48 |
return self.data.shape |
|
|
49 |
|
|
|
50 |
def num_slices_along_axis(self, axis): |
|
|
51 |
return self.data.shape[NII.VIEW_MAPPING[axis]] |
|
|
52 |
|
|
|
53 |
def normalize(self, method='scaling', lowerpercentile=None, upperpercentile=None): |
|
|
54 |
# Convert the attribute "data" to float() |
|
|
55 |
self.data = self.data.astype(np.float32) |
|
|
56 |
|
|
|
57 |
if lowerpercentile is not None: |
|
|
58 |
qlow = np.percentile(self.data, lowerpercentile) |
|
|
59 |
if upperpercentile is not None: |
|
|
60 |
qup = np.percentile(self.data, upperpercentile) |
|
|
61 |
|
|
|
62 |
if lowerpercentile is not None: |
|
|
63 |
self.data[self.data < qlow] = qlow |
|
|
64 |
if upperpercentile is not None: |
|
|
65 |
self.data[self.data > qup] = qup |
|
|
66 |
|
|
|
67 |
if method == 'scaling': |
|
|
68 |
# Divide "data" by its maximum value |
|
|
69 |
if self.data.max() > 0.0: |
|
|
70 |
self.data = np.multiply(self.data, 1.0 / self.data.max()) |
|
|
71 |
elif method == 'standardization': |
|
|
72 |
self.data = self.data - np.mean(self.data) |
|
|
73 |
self.data = self.data / np.std(self.data) |
|
|
74 |
|
|
|
75 |
self.update_sitk() |
|
|
76 |
|
|
|
77 |
def apply_skullmap(self, skullmap): |
|
|
78 |
brainmask = skullmap.get_data() |
|
|
79 |
brainmask[brainmask < 0.1] = 0 |
|
|
80 |
brainmask[brainmask >= 0.1] = 1 |
|
|
81 |
self.data = self.data * brainmask |
|
|
82 |
|
|
|
83 |
self.update_sitk() |
|
|
84 |
|
|
|
85 |
def denoise(self): |
|
|
86 |
self.nii = sitk.CurvatureFlow(image1=self.nii, timeStep=0.125, numberOfIterations=3) |
|
|
87 |
self._update_attributes() |
|
|
88 |
|
|
|
89 |
def subtract(self, filename): |
|
|
90 |
nii_sub = NII(filename) |
|
|
91 |
self.data = self.data - nii_sub.get_data() |
|
|
92 |
self.update_sitk() |
|
|
93 |
|
|
|
94 |
def get_slice(self, the_slice, axis='axial'): |
|
|
95 |
indices = [slice(None)] * self.data.ndim |
|
|
96 |
indices[NII.VIEW_MAPPING[axis]] = the_slice |
|
|
97 |
return self.data[tuple(indices)] |
|
|
98 |
|
|
|
99 |
def set_slice(self, the_slice, the_data, axis='axial'): |
|
|
100 |
indices = [slice(None)] * self.data.ndim |
|
|
101 |
indices[NII.VIEW_MAPPING[axis]] = the_slice |
|
|
102 |
self.data[tuple(indices)] = the_data |
|
|
103 |
self.update_sitk() |
|
|
104 |
self._update_attributes() |
|
|
105 |
|
|
|
106 |
# The first index of the subvolume is expected to be the axis we iterate over |
|
|
107 |
def set_subvolume(self, slice_start, slice_end, subvolume, axis='axial'): |
|
|
108 |
for s in range(slice_start, slice_end): |
|
|
109 |
self.set_slice(s, subvolume[s - slice_start, :, :], axis) |
|
|
110 |
|
|
|
111 |
def get_data(self): |
|
|
112 |
return self.data |
|
|
113 |
|
|
|
114 |
def cast_to_float(self): |
|
|
115 |
self.nii = sitk.Cast(self.nii, sitk.sitkFloat64) |
|
|
116 |
self._update_attributes() |
|
|
117 |
|
|
|
118 |
def set_to_zero(self): |
|
|
119 |
self.data.fill(0.0) |
|
|
120 |
self.update_sitk() |
|
|
121 |
|
|
|
122 |
def visualize(self, axis='axial', pause=0.2): |
|
|
123 |
num_slices = self.data.shape[NII.VIEW_MAPPING[axis]] |
|
|
124 |
for i in range(num_slices): |
|
|
125 |
img = self.get_slice(i, axis=axis) |
|
|
126 |
plt.imshow(img) |
|
|
127 |
plt.title(f"Slice {i}/{num_slices}") |
|
|
128 |
plt.pause(pause) |
|
|
129 |
plt.cla() |
|
|
130 |
|
|
|
131 |
def copy(self): |
|
|
132 |
return copy.deepcopy(self) |