--- a +++ b/trainers/fAnoGAN.py @@ -0,0 +1,242 @@ +from collections import defaultdict +from math import inf + +from tensorflow.python.ops.losses.losses_impl import Reduction + +from trainers import trainer_utils +from trainers.AEMODEL import AEMODEL, Phase, indicate_early_stopping, update_log_dicts +from trainers.DLMODEL import * + + +class fAnoGAN(AEMODEL): + class Config(AEMODEL.Config): + def __init__(self): + super().__init__('fAnoGAN') + self.scale = 10.0 + self.kappa = 1.0 + + def __init__(self, sess, config, network=None): + super().__init__(sess, config, network) + self.x = tf.placeholder(tf.float32, [None, self.config.outputHeight, self.config.outputWidth, self.config.numChannels], name='x') + self.z = tf.placeholder(tf.float32, [None, self.config.zDim], name='z') + + self.outputs = self.network(self.z, self.x, dropout_rate=self.dropout_rate, dropout=self.dropout, config=self.config) + self.z_enc = self.outputs['z_enc'] + self.generated = self.x_ = self.outputs['x_'] + self.reconstruction = self.x_enc = self.outputs['x_enc'] + self.d_fake_features = self.outputs['d_fake_features'] + self.d_ = self.outputs['d_'] + self.d_features = self.outputs['d_features'] + self.d = self.outputs['d'] + self.x_hat = self.outputs['x_hat'] + self.d_hat_features = self.outputs['d_hat_features'] + self.d_hat = self.outputs['d_hat'] + self.d_enc_features = self.outputs['d_enc_features'] + self.d_enc = self.outputs['d_enc'] + + self.kappa = self.config.kappa + self.scale = self.config.scale + + # Print Stats + self.get_number_of_trainable_params() + # Instantiate Saver + self.saver = tf.train.Saver() + + def train(self, dataset): + # Determine trainable variables + self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) + + # Build losses + self.losses['disc_real'] = disc_real = tf.reduce_mean(self.d) + self.losses['disc_fake'] = disc_fake = tf.reduce_mean(self.d_) + self.losses['gen_loss'] = gen_loss = -disc_fake + disc_loss = disc_fake - disc_real + + ddx = tf.gradients(self.d_hat, self.x_hat)[0] # gradient + ddx = tf.sqrt(tf.reduce_sum(tf.square(ddx), axis=1)) # slopes + ddx = tf.reduce_mean(tf.square(ddx - 1.0)) * self.scale # gradient penalty + self.losses['disc_loss'] = disc_loss = disc_loss + ddx + + self.losses['loss_img'] = loss_img = tf.reduce_mean( + tf.reduce_mean(tf.losses.mean_squared_error(self.x, self.x_enc, reduction=Reduction.NONE), axis=[1, 2, 3])) + self.losses['loss_fts'] = loss_fts = tf.reduce_mean( + tf.reduce_mean(tf.losses.mean_squared_error(self.d_enc_features, self.d_features, reduction=Reduction.NONE), axis=[1, 2, 3])) + self.losses['enc_loss'] = enc_loss = loss_img + self.kappa * loss_fts + self.losses['L1'] = tf.losses.absolute_difference(self.x, self.x_enc, reduction=Reduction.NONE) + self.losses['reconstructionLoss'] = self.losses['loss'] = tf.reduce_mean(tf.reduce_sum(self.losses['L1'], axis=[1, 2, 3])) + + with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): + # Set the optimizer + t_vars = tf.trainable_variables() + dis_vars = [var for var in t_vars if 'Discriminator' in var.name] + gen_vars = [var for var in t_vars if 'Generator' in var.name] + enc_vars = [var for var in t_vars if 'Encoder' in var.name] + + optim_dis = tf.train.AdamOptimizer(learning_rate=self.config.learningrate, beta1=0.5, beta2=0.9).minimize(disc_loss, var_list=dis_vars) + optim_gen = tf.train.AdamOptimizer(learning_rate=self.config.learningrate, beta1=0.5, beta2=0.9).minimize(gen_loss, var_list=gen_vars) + optim_enc = tf.train.AdamOptimizer(learning_rate=self.config.learningrate, beta1=0.5, beta2=0.9).minimize(enc_loss, var_list=enc_vars) + + # initialize all variables + tf.global_variables_initializer().run(session=self.sess) + + best_cost = inf + last_improvement = 0 + last_epoch = self.load_checkpoint() + + # Go go go! + for epoch in range(last_epoch, self.config.numEpochs): + ################# + # TRAINING WGAN # + ################# + phase = Phase.TRAIN + scalars = defaultdict(list) + visuals = [] + d_iters = 5 + num_batches = dataset.num_batches(self.config.batchsize, set=phase.value) + for idx in range(0, num_batches): + batch, _, _ = dataset.next_batch(self.config.batchsize, set=phase.value) + + # Generator optimization + fetches = { + 'generated': self.generated, + 'gen_loss': self.losses['gen_loss'], + 'optimizer_g': optim_gen, + } + + feed_dict = { + self.x: batch, + self.z: self.sample_z(), + self.dropout: phase == Phase.TRAIN, + self.dropout_rate: self.config.dropout_rate + } + run = self.sess.run(fetches, feed_dict=feed_dict) + + for _ in range(0, d_iters): + # Discriminator optimization + fetches = { + 'generated': self.generated, + 'disc_loss': self.losses['disc_loss'], + 'disc_fake': self.losses['disc_fake'], + 'disc_real': self.losses['disc_real'], + 'optimizer_d': optim_dis, + } + feed_dict = { + self.x: batch, + self.z: self.sample_z(), + self.dropout: phase == Phase.TRAIN, + self.dropout_rate: self.config.dropout_rate + } + run = {**run, **self.sess.run(fetches, feed_dict=feed_dict)} + + # Print to console + print(f'Epoch ({phase.value} WGAN): [{epoch:2d}] [{idx:4d}/{num_batches:4d}]' + f' gen_loss: {run["gen_loss"]:.8f}, disc_loss: {run["disc_loss"]:.8f}') + update_log_dicts(*trainer_utils.get_summary_dict(batch, run, visualization_keys=['generated']), scalars, visuals) + + self.log_to_tensorboard(epoch, scalars, visuals, phase, name='wgan_x') + + # Increment last_epoch counter and save model + last_epoch += 1 + self.save(self.checkpointDir, last_epoch) + + for epoch in range(last_epoch, 2 * self.config.numEpochs): + #################### + # TRAINING Encoder # + #################### + phase = Phase.TRAIN + scalars = defaultdict(list) + visuals = [] + num_batches = dataset.num_batches(self.config.batchsize, set=phase.value) + for idx in range(0, num_batches): + batch, _, _ = dataset.next_batch(self.config.batchsize, set=phase.value) + fetches = { + 'reconstruction': self.reconstruction, + 'optimizer_enc': optim_enc, + 'z_enc': self.z_enc, + 'z': self.z, + **self.losses + } + + feed_dict = { + self.x: batch, + self.z: self.sample_z(), + self.dropout: phase == Phase.TRAIN, + self.dropout_rate: self.config.dropout_rate + } + run = self.sess.run(fetches, feed_dict=feed_dict) + + # Print to console + print(f'Epoch ({phase.value} Encoder): [{epoch:2d}] [{idx:4d}/{num_batches:4d}] reconstructionLoss: {run["reconstructionLoss"]:.8f}') + update_log_dicts(*trainer_utils.get_summary_dict(batch, run), scalars, visuals) + + self.log_to_tensorboard(epoch, scalars, visuals, phase) + + # Increment last_epoch counter and save model + last_epoch += 1 + self.save(self.checkpointDir, last_epoch) + + ###################### + # VALIDATION Encoder # + ###################### + phase = Phase.VAL + scalars = defaultdict(list) + visuals = [] + num_batches = dataset.num_batches(self.config.batchsize, set=phase.value) + for idx in range(0, num_batches): + batch, _, _ = dataset.next_batch(self.config.batchsize, set=phase.value) + + fetches = { + 'reconstruction': self.reconstruction, + **self.losses + } + + feed_dict = { + self.x: batch, + self.z: self.sample_z(), + self.dropout: phase == Phase.TRAIN, + self.dropout_rate: self.config.dropout_rate + } + run = self.sess.run(fetches, feed_dict=feed_dict) + + # Print to console + print(f'Epoch ({phase.value}): [{epoch:2d}] [{idx:4d}/{num_batches:4d}] reconstructionLoss: {run["reconstructionLoss"]:.8f}') + update_log_dicts(*trainer_utils.get_summary_dict(batch, run), scalars, visuals) + + self.log_to_tensorboard(epoch, scalars, visuals, phase) + + best_cost, last_improvement, stop = indicate_early_stopping(scalars['reconstructionLoss'], best_cost, last_improvement) + if stop: + print('Early stopping was triggered due to no improvement over the last 5 epochs') + break + + def get_feed_dict(self, batch, phase): + return { + self.x: batch, + self.z: self.sample_z(), + self.dropout: phase == Phase.TRAIN, + self.dropout_rate: self.config.dropout_rate + } + + def reconstruct(self, x, dropout=False): + if x.ndim < 4: + x = np.expand_dims(x, 0) + + fetches = { + 'reconstruction': self.reconstruction + } + + feed_dict = { + self.x: x, + self.z: self.sample_z(x.shape[0]), + self.dropout: dropout, # apply only during MC sampling. + self.dropout_rate: self.config.dropout_rate + } + results = self.sess.run(fetches, feed_dict=feed_dict) + + results['l1err'] = np.sum(np.abs(x - results['reconstruction'])) + results['l2err'] = np.sum(np.sqrt((x - results['reconstruction']) ** 2)) + + return results + + def sample_z(self, batch_size=None): + return np.random.normal(size=[batch_size if batch_size else self.config.batchsize, self.config.zDim])