Diff of /trainers/fAnoGAN.py [000000] .. [978658]

Switch to unified view

a b/trainers/fAnoGAN.py
1
from collections import defaultdict
2
from math import inf
3
4
from tensorflow.python.ops.losses.losses_impl import Reduction
5
6
from trainers import trainer_utils
7
from trainers.AEMODEL import AEMODEL, Phase, indicate_early_stopping, update_log_dicts
8
from trainers.DLMODEL import *
9
10
11
class fAnoGAN(AEMODEL):
12
    class Config(AEMODEL.Config):
13
        def __init__(self):
14
            super().__init__('fAnoGAN')
15
            self.scale = 10.0
16
            self.kappa = 1.0
17
18
    def __init__(self, sess, config, network=None):
19
        super().__init__(sess, config, network)
20
        self.x = tf.placeholder(tf.float32, [None, self.config.outputHeight, self.config.outputWidth, self.config.numChannels], name='x')
21
        self.z = tf.placeholder(tf.float32, [None, self.config.zDim], name='z')
22
23
        self.outputs = self.network(self.z, self.x, dropout_rate=self.dropout_rate, dropout=self.dropout, config=self.config)
24
        self.z_enc = self.outputs['z_enc']
25
        self.generated = self.x_ = self.outputs['x_']
26
        self.reconstruction = self.x_enc = self.outputs['x_enc']
27
        self.d_fake_features = self.outputs['d_fake_features']
28
        self.d_ = self.outputs['d_']
29
        self.d_features = self.outputs['d_features']
30
        self.d = self.outputs['d']
31
        self.x_hat = self.outputs['x_hat']
32
        self.d_hat_features = self.outputs['d_hat_features']
33
        self.d_hat = self.outputs['d_hat']
34
        self.d_enc_features = self.outputs['d_enc_features']
35
        self.d_enc = self.outputs['d_enc']
36
37
        self.kappa = self.config.kappa
38
        self.scale = self.config.scale
39
40
        # Print Stats
41
        self.get_number_of_trainable_params()
42
        # Instantiate Saver
43
        self.saver = tf.train.Saver()
44
45
    def train(self, dataset):
46
        # Determine trainable variables
47
        self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
48
49
        # Build losses
50
        self.losses['disc_real'] = disc_real = tf.reduce_mean(self.d)
51
        self.losses['disc_fake'] = disc_fake = tf.reduce_mean(self.d_)
52
        self.losses['gen_loss'] = gen_loss = -disc_fake
53
        disc_loss = disc_fake - disc_real
54
55
        ddx = tf.gradients(self.d_hat, self.x_hat)[0]  # gradient
56
        ddx = tf.sqrt(tf.reduce_sum(tf.square(ddx), axis=1))  # slopes
57
        ddx = tf.reduce_mean(tf.square(ddx - 1.0)) * self.scale  # gradient penalty
58
        self.losses['disc_loss'] = disc_loss = disc_loss + ddx
59
60
        self.losses['loss_img'] = loss_img = tf.reduce_mean(
61
            tf.reduce_mean(tf.losses.mean_squared_error(self.x, self.x_enc, reduction=Reduction.NONE), axis=[1, 2, 3]))
62
        self.losses['loss_fts'] = loss_fts = tf.reduce_mean(
63
            tf.reduce_mean(tf.losses.mean_squared_error(self.d_enc_features, self.d_features, reduction=Reduction.NONE), axis=[1, 2, 3]))
64
        self.losses['enc_loss'] = enc_loss = loss_img + self.kappa * loss_fts
65
        self.losses['L1'] = tf.losses.absolute_difference(self.x, self.x_enc, reduction=Reduction.NONE)
66
        self.losses['reconstructionLoss'] = self.losses['loss'] = tf.reduce_mean(tf.reduce_sum(self.losses['L1'], axis=[1, 2, 3]))
67
68
        with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
69
            # Set the optimizer
70
            t_vars = tf.trainable_variables()
71
            dis_vars = [var for var in t_vars if 'Discriminator' in var.name]
72
            gen_vars = [var for var in t_vars if 'Generator' in var.name]
73
            enc_vars = [var for var in t_vars if 'Encoder' in var.name]
74
75
            optim_dis = tf.train.AdamOptimizer(learning_rate=self.config.learningrate, beta1=0.5, beta2=0.9).minimize(disc_loss, var_list=dis_vars)
76
            optim_gen = tf.train.AdamOptimizer(learning_rate=self.config.learningrate, beta1=0.5, beta2=0.9).minimize(gen_loss, var_list=gen_vars)
77
            optim_enc = tf.train.AdamOptimizer(learning_rate=self.config.learningrate, beta1=0.5, beta2=0.9).minimize(enc_loss, var_list=enc_vars)
78
79
        # initialize all variables
80
        tf.global_variables_initializer().run(session=self.sess)
81
82
        best_cost = inf
83
        last_improvement = 0
84
        last_epoch = self.load_checkpoint()
85
86
        # Go go go!
87
        for epoch in range(last_epoch, self.config.numEpochs):
88
            #################
89
            # TRAINING WGAN #
90
            #################
91
            phase = Phase.TRAIN
92
            scalars = defaultdict(list)
93
            visuals = []
94
            d_iters = 5
95
            num_batches = dataset.num_batches(self.config.batchsize, set=phase.value)
96
            for idx in range(0, num_batches):
97
                batch, _, _ = dataset.next_batch(self.config.batchsize, set=phase.value)
98
99
                # Generator optimization
100
                fetches = {
101
                    'generated': self.generated,
102
                    'gen_loss': self.losses['gen_loss'],
103
                    'optimizer_g': optim_gen,
104
                }
105
106
                feed_dict = {
107
                    self.x: batch,
108
                    self.z: self.sample_z(),
109
                    self.dropout: phase == Phase.TRAIN,
110
                    self.dropout_rate: self.config.dropout_rate
111
                }
112
                run = self.sess.run(fetches, feed_dict=feed_dict)
113
114
                for _ in range(0, d_iters):
115
                    # Discriminator optimization
116
                    fetches = {
117
                        'generated': self.generated,
118
                        'disc_loss': self.losses['disc_loss'],
119
                        'disc_fake': self.losses['disc_fake'],
120
                        'disc_real': self.losses['disc_real'],
121
                        'optimizer_d': optim_dis,
122
                    }
123
                    feed_dict = {
124
                        self.x: batch,
125
                        self.z: self.sample_z(),
126
                        self.dropout: phase == Phase.TRAIN,
127
                        self.dropout_rate: self.config.dropout_rate
128
                    }
129
                    run = {**run, **self.sess.run(fetches, feed_dict=feed_dict)}
130
131
                # Print to console
132
                print(f'Epoch ({phase.value} WGAN): [{epoch:2d}] [{idx:4d}/{num_batches:4d}]'
133
                      f' gen_loss: {run["gen_loss"]:.8f}, disc_loss: {run["disc_loss"]:.8f}')
134
                update_log_dicts(*trainer_utils.get_summary_dict(batch, run, visualization_keys=['generated']), scalars, visuals)
135
136
            self.log_to_tensorboard(epoch, scalars, visuals, phase, name='wgan_x')
137
138
            # Increment last_epoch counter and save model
139
            last_epoch += 1
140
            self.save(self.checkpointDir, last_epoch)
141
142
        for epoch in range(last_epoch, 2 * self.config.numEpochs):
143
            ####################
144
            # TRAINING Encoder #
145
            ####################
146
            phase = Phase.TRAIN
147
            scalars = defaultdict(list)
148
            visuals = []
149
            num_batches = dataset.num_batches(self.config.batchsize, set=phase.value)
150
            for idx in range(0, num_batches):
151
                batch, _, _ = dataset.next_batch(self.config.batchsize, set=phase.value)
152
                fetches = {
153
                    'reconstruction': self.reconstruction,
154
                    'optimizer_enc': optim_enc,
155
                    'z_enc': self.z_enc,
156
                    'z': self.z,
157
                    **self.losses
158
                }
159
160
                feed_dict = {
161
                    self.x: batch,
162
                    self.z: self.sample_z(),
163
                    self.dropout: phase == Phase.TRAIN,
164
                    self.dropout_rate: self.config.dropout_rate
165
                }
166
                run = self.sess.run(fetches, feed_dict=feed_dict)
167
168
                # Print to console
169
                print(f'Epoch ({phase.value} Encoder): [{epoch:2d}] [{idx:4d}/{num_batches:4d}]  reconstructionLoss: {run["reconstructionLoss"]:.8f}')
170
                update_log_dicts(*trainer_utils.get_summary_dict(batch, run), scalars, visuals)
171
172
            self.log_to_tensorboard(epoch, scalars, visuals, phase)
173
174
            # Increment last_epoch counter and save model
175
            last_epoch += 1
176
            self.save(self.checkpointDir, last_epoch)
177
178
            ######################
179
            # VALIDATION Encoder #
180
            ######################
181
            phase = Phase.VAL
182
            scalars = defaultdict(list)
183
            visuals = []
184
            num_batches = dataset.num_batches(self.config.batchsize, set=phase.value)
185
            for idx in range(0, num_batches):
186
                batch, _, _ = dataset.next_batch(self.config.batchsize, set=phase.value)
187
188
                fetches = {
189
                    'reconstruction': self.reconstruction,
190
                    **self.losses
191
                }
192
193
                feed_dict = {
194
                    self.x: batch,
195
                    self.z: self.sample_z(),
196
                    self.dropout: phase == Phase.TRAIN,
197
                    self.dropout_rate: self.config.dropout_rate
198
                }
199
                run = self.sess.run(fetches, feed_dict=feed_dict)
200
201
                # Print to console
202
                print(f'Epoch ({phase.value}): [{epoch:2d}] [{idx:4d}/{num_batches:4d}] reconstructionLoss: {run["reconstructionLoss"]:.8f}')
203
                update_log_dicts(*trainer_utils.get_summary_dict(batch, run), scalars, visuals)
204
205
            self.log_to_tensorboard(epoch, scalars, visuals, phase)
206
207
            best_cost, last_improvement, stop = indicate_early_stopping(scalars['reconstructionLoss'], best_cost, last_improvement)
208
            if stop:
209
                print('Early stopping was triggered due to no improvement over the last 5 epochs')
210
                break
211
212
    def get_feed_dict(self, batch, phase):
213
        return {
214
            self.x: batch,
215
            self.z: self.sample_z(),
216
            self.dropout: phase == Phase.TRAIN,
217
            self.dropout_rate: self.config.dropout_rate
218
        }
219
220
    def reconstruct(self, x, dropout=False):
221
        if x.ndim < 4:
222
            x = np.expand_dims(x, 0)
223
224
        fetches = {
225
            'reconstruction': self.reconstruction
226
        }
227
228
        feed_dict = {
229
            self.x: x,
230
            self.z: self.sample_z(x.shape[0]),
231
            self.dropout: dropout,  # apply only during MC sampling.
232
            self.dropout_rate: self.config.dropout_rate
233
        }
234
        results = self.sess.run(fetches, feed_dict=feed_dict)
235
236
        results['l1err'] = np.sum(np.abs(x - results['reconstruction']))
237
        results['l2err'] = np.sum(np.sqrt((x - results['reconstruction']) ** 2))
238
239
        return results
240
241
    def sample_z(self, batch_size=None):
242
        return np.random.normal(size=[batch_size if batch_size else self.config.batchsize, self.config.zDim])