Diff of /trainers/ceVAE.py [000000] .. [978658]

Switch to unified view

a b/trainers/ceVAE.py
1
from collections import defaultdict
2
from math import inf
3
4
from tensorflow.python.ops.losses.losses_impl import Reduction
5
6
from trainers import trainer_utils
7
from trainers.AEMODEL import AEMODEL, Phase, indicate_early_stopping, update_log_dicts
8
from trainers.CE import retrieve_masked_batch
9
from trainers.DLMODEL import *
10
11
12
class ceVAE(AEMODEL):
13
    class Config(AEMODEL.Config):
14
        def __init__(self):
15
            super().__init__('ceVAE')
16
            self.use_gradient_based_restoration = True
17
18
    def __init__(self, sess, config, network=None):
19
        super().__init__(sess, config, network)
20
        self.x = tf.placeholder(tf.float32, [None, self.config.outputHeight, self.config.outputWidth, self.config.numChannels], name='x')
21
        self.x_ce = tf.placeholder(tf.float32, [None, self.config.outputHeight, self.config.outputWidth, self.config.numChannels], name='x_ce')
22
        self.outputs = self.network(self.x, self.x_ce, dropout_rate=self.dropout_rate, dropout=self.dropout, config=self.config)
23
        self.reconstruction = self.outputs['x_hat']
24
        self.reconstruction_ce = self.outputs['x_hat_ce']
25
        self.z_mu = self.outputs['z_mu']
26
        self.z_sigma = self.outputs['z_sigma']
27
28
        # Print Stats
29
        self.get_number_of_trainable_params()
30
        # Instantiate Saver
31
        self.saver = tf.train.Saver()
32
33
    def train(self, dataset):
34
        # Determine trainable variables
35
        self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
36
37
        # Build losses
38
        self.losses['L1_vae'] = tf.losses.absolute_difference(self.x, self.reconstruction, reduction=Reduction.NONE)
39
        self.losses['L1_ce'] = tf.losses.absolute_difference(self.x_ce, self.reconstruction_ce, reduction=Reduction.NONE)
40
        self.losses['L1'] = 0.5 * (self.losses['L1_vae'] + self.losses['L1_ce'])
41
        rec_vae = tf.reduce_sum(self.losses['L1_vae'], axis=[1, 2, 3])
42
        rec_ce = tf.reduce_sum(self.losses['L1_ce'], axis=[1, 2, 3])
43
        kl = 0.5 * tf.reduce_sum(tf.square(self.z_mu) + tf.square(self.z_sigma) - tf.log(tf.square(self.z_sigma)) - 1, axis=1)
44
45
        self.losses['Rec_ce'] = tf.reduce_mean(rec_ce)
46
        self.losses['Rec_vae'] = tf.reduce_mean(rec_vae)
47
        self.losses['reconstructionLoss'] = 0.5 * tf.reduce_mean(rec_vae + rec_ce)
48
        self.losses['kl'] = tf.reduce_mean(kl)
49
        self.losses['loss'] = tf.reduce_mean(rec_vae + kl + rec_ce)
50
        self.losses['loss_vae'] = tf.reduce_mean(rec_vae + kl)
51
        self.losses['anomaly'] = self.losses['L1_vae'] * tf.abs(tf.gradients(self.losses['loss_vae'], self.x))[0]
52
53
        # Set the optimizer
54
        optim = self.create_optimizer(self.losses['loss'], var_list=self.variables, learningrate=self.config.learningrate,
55
                                      beta1=self.config.beta1, type=self.config.optimizer)
56
57
        # initialize all variables
58
        tf.global_variables_initializer().run(session=self.sess)
59
60
        best_cost = inf
61
        last_improvement = 0
62
        last_epoch = self.load_checkpoint()
63
64
        visualization_keys = ['reconstruction', 'reconstruction_ce', 'anomaly']
65
        # Go go go!
66
        for epoch in range(last_epoch, self.config.numEpochs):
67
            ############
68
            # TRAINING #
69
            ############
70
            self.process(dataset, epoch, Phase.TRAIN, optim, visualization_keys=visualization_keys)
71
72
            # Increment last_epoch counter and save model
73
            last_epoch += 1
74
            self.save(self.checkpointDir, last_epoch)
75
76
            ##############
77
            # VALIDATION #
78
            ##############
79
            val_scalars = self.process(dataset, epoch, Phase.VAL, visualization_keys=visualization_keys)
80
81
            best_cost, last_improvement, stop = indicate_early_stopping(val_scalars['loss'], best_cost, last_improvement)
82
            if stop:
83
                print('Early stopping was triggered due to no improvement over the last 5 epochs')
84
                break
85
86
    def process(self, dataset, epoch, phase: Phase, optim=None, visualization_keys=None):
87
        scalars = defaultdict(list)
88
        visuals = []
89
        num_batches = dataset.num_batches(self.config.batchsize, set=phase.value)
90
        for idx in range(0, num_batches):
91
            batch, _, brainmasks = dataset.next_batch(self.config.batchsize, return_brainmask=True, set=phase.value)
92
93
            masked_batch = retrieve_masked_batch(batch, brainmasks)
94
95
            fetches = {
96
                'reconstruction': self.reconstruction,
97
                'reconstruction_ce': self.reconstruction_ce,
98
                **self.losses
99
            }
100
            if phase == Phase.TRAIN:
101
                fetches['optimizer'] = optim
102
103
            feed_dict = {
104
                self.x: batch,
105
                self.x_ce: masked_batch if phase == Phase.TRAIN else batch,
106
                self.dropout: phase == Phase.TRAIN,
107
                self.dropout_rate: self.config.dropout_rate
108
            }
109
110
            run = self.sess.run(fetches, feed_dict=feed_dict)
111
112
            # Print to console
113
            print(f'Epoch ({phase.value}): [{epoch:2d}] [{idx:4d}/{num_batches:4d}] loss: {run["loss"]:.8f}')
114
            update_log_dicts(*trainer_utils.get_summary_dict(batch, run, visualization_keys), scalars, visuals)
115
116
        self.log_to_tensorboard(epoch, scalars, visuals, phase)
117
        return scalars
118
119
    def reconstruct(self, x, dropout=False):
120
        if x.ndim < 4:
121
            x = np.expand_dims(x, 0)
122
123
        fetches = {
124
            'reconstruction': self.reconstruction,
125
            **self.losses
126
        }
127
128
        feed_dict = {
129
            self.x: x,
130
            self.x_ce: x,
131
            self.dropout: dropout,
132
            self.dropout_rate: self.config.dropout_rate
133
        }
134
        results = self.sess.run(fetches, feed_dict=feed_dict)
135
136
        if self.config.use_gradient_based_restoration:
137
            # this is actually not the real 'reconstruction' but for convenience we treat it like it
138
            # would be to prevent changes in our evaluation script
139
            results['reconstruction'] = x - self.config.use_gradient_based_restoration * results['anomaly']
140
141
        results['l1err'] = np.sum(np.abs(x - results['reconstruction']))
142
        results['l2err'] = np.sum(np.sqrt((x - results['reconstruction']) ** 2))
143
144
        return results