Diff of /trainers/ceVAE.py [000000] .. [978658]

Switch to side-by-side view

--- a
+++ b/trainers/ceVAE.py
@@ -0,0 +1,144 @@
+from collections import defaultdict
+from math import inf
+
+from tensorflow.python.ops.losses.losses_impl import Reduction
+
+from trainers import trainer_utils
+from trainers.AEMODEL import AEMODEL, Phase, indicate_early_stopping, update_log_dicts
+from trainers.CE import retrieve_masked_batch
+from trainers.DLMODEL import *
+
+
+class ceVAE(AEMODEL):
+    class Config(AEMODEL.Config):
+        def __init__(self):
+            super().__init__('ceVAE')
+            self.use_gradient_based_restoration = True
+
+    def __init__(self, sess, config, network=None):
+        super().__init__(sess, config, network)
+        self.x = tf.placeholder(tf.float32, [None, self.config.outputHeight, self.config.outputWidth, self.config.numChannels], name='x')
+        self.x_ce = tf.placeholder(tf.float32, [None, self.config.outputHeight, self.config.outputWidth, self.config.numChannels], name='x_ce')
+        self.outputs = self.network(self.x, self.x_ce, dropout_rate=self.dropout_rate, dropout=self.dropout, config=self.config)
+        self.reconstruction = self.outputs['x_hat']
+        self.reconstruction_ce = self.outputs['x_hat_ce']
+        self.z_mu = self.outputs['z_mu']
+        self.z_sigma = self.outputs['z_sigma']
+
+        # Print Stats
+        self.get_number_of_trainable_params()
+        # Instantiate Saver
+        self.saver = tf.train.Saver()
+
+    def train(self, dataset):
+        # Determine trainable variables
+        self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
+
+        # Build losses
+        self.losses['L1_vae'] = tf.losses.absolute_difference(self.x, self.reconstruction, reduction=Reduction.NONE)
+        self.losses['L1_ce'] = tf.losses.absolute_difference(self.x_ce, self.reconstruction_ce, reduction=Reduction.NONE)
+        self.losses['L1'] = 0.5 * (self.losses['L1_vae'] + self.losses['L1_ce'])
+        rec_vae = tf.reduce_sum(self.losses['L1_vae'], axis=[1, 2, 3])
+        rec_ce = tf.reduce_sum(self.losses['L1_ce'], axis=[1, 2, 3])
+        kl = 0.5 * tf.reduce_sum(tf.square(self.z_mu) + tf.square(self.z_sigma) - tf.log(tf.square(self.z_sigma)) - 1, axis=1)
+
+        self.losses['Rec_ce'] = tf.reduce_mean(rec_ce)
+        self.losses['Rec_vae'] = tf.reduce_mean(rec_vae)
+        self.losses['reconstructionLoss'] = 0.5 * tf.reduce_mean(rec_vae + rec_ce)
+        self.losses['kl'] = tf.reduce_mean(kl)
+        self.losses['loss'] = tf.reduce_mean(rec_vae + kl + rec_ce)
+        self.losses['loss_vae'] = tf.reduce_mean(rec_vae + kl)
+        self.losses['anomaly'] = self.losses['L1_vae'] * tf.abs(tf.gradients(self.losses['loss_vae'], self.x))[0]
+
+        # Set the optimizer
+        optim = self.create_optimizer(self.losses['loss'], var_list=self.variables, learningrate=self.config.learningrate,
+                                      beta1=self.config.beta1, type=self.config.optimizer)
+
+        # initialize all variables
+        tf.global_variables_initializer().run(session=self.sess)
+
+        best_cost = inf
+        last_improvement = 0
+        last_epoch = self.load_checkpoint()
+
+        visualization_keys = ['reconstruction', 'reconstruction_ce', 'anomaly']
+        # Go go go!
+        for epoch in range(last_epoch, self.config.numEpochs):
+            ############
+            # TRAINING #
+            ############
+            self.process(dataset, epoch, Phase.TRAIN, optim, visualization_keys=visualization_keys)
+
+            # Increment last_epoch counter and save model
+            last_epoch += 1
+            self.save(self.checkpointDir, last_epoch)
+
+            ##############
+            # VALIDATION #
+            ##############
+            val_scalars = self.process(dataset, epoch, Phase.VAL, visualization_keys=visualization_keys)
+
+            best_cost, last_improvement, stop = indicate_early_stopping(val_scalars['loss'], best_cost, last_improvement)
+            if stop:
+                print('Early stopping was triggered due to no improvement over the last 5 epochs')
+                break
+
+    def process(self, dataset, epoch, phase: Phase, optim=None, visualization_keys=None):
+        scalars = defaultdict(list)
+        visuals = []
+        num_batches = dataset.num_batches(self.config.batchsize, set=phase.value)
+        for idx in range(0, num_batches):
+            batch, _, brainmasks = dataset.next_batch(self.config.batchsize, return_brainmask=True, set=phase.value)
+
+            masked_batch = retrieve_masked_batch(batch, brainmasks)
+
+            fetches = {
+                'reconstruction': self.reconstruction,
+                'reconstruction_ce': self.reconstruction_ce,
+                **self.losses
+            }
+            if phase == Phase.TRAIN:
+                fetches['optimizer'] = optim
+
+            feed_dict = {
+                self.x: batch,
+                self.x_ce: masked_batch if phase == Phase.TRAIN else batch,
+                self.dropout: phase == Phase.TRAIN,
+                self.dropout_rate: self.config.dropout_rate
+            }
+
+            run = self.sess.run(fetches, feed_dict=feed_dict)
+
+            # Print to console
+            print(f'Epoch ({phase.value}): [{epoch:2d}] [{idx:4d}/{num_batches:4d}] loss: {run["loss"]:.8f}')
+            update_log_dicts(*trainer_utils.get_summary_dict(batch, run, visualization_keys), scalars, visuals)
+
+        self.log_to_tensorboard(epoch, scalars, visuals, phase)
+        return scalars
+
+    def reconstruct(self, x, dropout=False):
+        if x.ndim < 4:
+            x = np.expand_dims(x, 0)
+
+        fetches = {
+            'reconstruction': self.reconstruction,
+            **self.losses
+        }
+
+        feed_dict = {
+            self.x: x,
+            self.x_ce: x,
+            self.dropout: dropout,
+            self.dropout_rate: self.config.dropout_rate
+        }
+        results = self.sess.run(fetches, feed_dict=feed_dict)
+
+        if self.config.use_gradient_based_restoration:
+            # this is actually not the real 'reconstruction' but for convenience we treat it like it
+            # would be to prevent changes in our evaluation script
+            results['reconstruction'] = x - self.config.use_gradient_based_restoration * results['anomaly']
+
+        results['l1err'] = np.sum(np.abs(x - results['reconstruction']))
+        results['l2err'] = np.sum(np.sqrt((x - results['reconstruction']) ** 2))
+
+        return results