[978658]: / trainers / Metrics.py

Download this file

174 lines (131 with data), 6.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import csv
import math
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score
def xfrange(start, stop, step):
i = 0
while start + i * step < stop:
yield start + i * step
i += 1
def compute_prc(predictions, labels, filename=None, plottitle="Precision-Recall Curve"):
precisions, recalls, thresholds = precision_recall_curve(labels.astype(int), predictions)
auprc = average_precision_score(labels.astype(int), predictions)
fig = matplotlib.pyplot.figure()
matplotlib.pyplot.step(recalls, precisions, color='b', alpha=0.2, where='post')
matplotlib.pyplot.fill_between(recalls, precisions, step='post', alpha=0.2, color='b')
matplotlib.pyplot.xlabel('Recall')
matplotlib.pyplot.ylabel('Precision')
matplotlib.pyplot.ylim([0.0, 1.05])
matplotlib.pyplot.xlim([0.0, 1.0])
matplotlib.pyplot.title(f'{plottitle} (area = {auprc:.2f}.)')
matplotlib.pyplot.show()
# save a pdf to disk
if filename:
fig.savefig(filename)
with open(filename + ".csv", mode="w") as csv_file:
fieldnames = ["Precision", "Recall"]
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
writer.writeheader()
for i in range(len(precisions)):
writer.writerow({"Precision": precisions[i], "Recall": recalls[i]})
return auprc, precisions, recalls, thresholds
def compute_roc(predictions, labels, filename=None, plottitle="ROC Curve"):
_fpr, _tpr, _ = roc_curve(labels.astype(int), predictions)
roc_auc = auc(_fpr, _tpr)
fig = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(_fpr, _tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
matplotlib.pyplot.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
matplotlib.pyplot.xlim([0.0, 1.0])
matplotlib.pyplot.ylim([0.0, 1.05])
matplotlib.pyplot.xlabel('False Positive Rate')
matplotlib.pyplot.ylabel('True Positive Rate')
matplotlib.pyplot.title(plottitle)
matplotlib.pyplot.legend(loc="lower right")
matplotlib.pyplot.show()
# save a pdf to disk
if filename:
fig.savefig(filename)
return roc_auc, _fpr, _tpr, _
def dice(P, G):
psum = np.sum(P.flatten())
gsum = np.sum(G.flatten())
pgsum = np.sum(np.multiply(P.flatten(), G.flatten()))
score = (2 * pgsum) / (psum + gsum)
return score
def confusion_matrix(P, G):
tp = np.sum(np.multiply(P.flatten(), G.flatten()))
fp = np.sum(np.multiply(P.flatten(), np.invert(G.flatten())))
fn = np.sum(np.multiply(np.invert(P.flatten()), G.flatten()))
tn = np.sum(np.multiply(np.invert(P.flatten()), np.invert(G.flatten())))
return tp, fp, tn, fn
def tpr(P, G):
tp = np.sum(np.multiply(P.flatten(), G.flatten()))
fn = np.sum(np.multiply(np.invert(P.flatten()), G.flatten()))
return tp / (tp + fn)
def fpr(P, G):
tn = np.sum(np.multiply(np.invert(P.flatten()), np.invert(G.flatten())))
fp = np.sum(np.multiply(P.flatten(), np.invert(G.flatten())))
return fp / (fp + tn)
def precision(P, G):
tp = np.sum(np.multiply(P.flatten(), G.flatten()))
fp = np.sum(np.multiply(P.flatten(), np.invert(G.flatten())))
return tp / (tp + fp)
def recall(P, G):
return tpr(P, G)
def vd(P, G):
tps = np.multiply(P.flatten(), G.flatten())
return np.sum(np.abs(np.logical_xor(tps, G.flatten()))) / np.sum(G.flatten())
def compute_dice_curve_recursive(predictions, labels, filename=None, plottitle="DICE Curve", granularity=5):
scores, threshs = compute_dice_score(predictions, labels, granularity)
best_score, best_threshold = sorted(zip(scores, threshs), reverse=True)[0]
min_threshs, max_threshs = min(threshs), max(threshs)
buffer_range = math.fabs(min_threshs - max_threshs) * 0.02
x_min, x_max = min(threshs) - buffer_range, max(threshs) + buffer_range
fig = matplotlib.pyplot.figure()
matplotlib.pyplot.plot(threshs, scores, color='darkorange', lw=2, label='DICE vs Threshold Curve')
matplotlib.pyplot.xlim([x_min, x_max])
matplotlib.pyplot.ylim([0.0, 1.05])
matplotlib.pyplot.xlabel('Thresholds')
matplotlib.pyplot.ylabel('DICE Score')
matplotlib.pyplot.title(plottitle)
matplotlib.pyplot.legend(loc="lower right")
matplotlib.pyplot.text(x_max - x_max * 0.01, 1, f'Best dice score at {best_threshold:.5f} with {best_score:.4f}', horizontalalignment='right',
verticalalignment='top')
matplotlib.pyplot.show()
# save a pdf to disk
if filename:
fig.savefig(filename)
bestthresh_idx = np.argmax(scores)
return scores[bestthresh_idx], threshs[bestthresh_idx]
def compute_dice_score(predictions, labels, granularity):
def inner_compute_dice_curve_recursive(start, stop, decimal):
_threshs = []
_scores = []
had_recursion = False
if decimal == granularity:
return _threshs, _scores
for i, t in enumerate(xfrange(start, stop, (1.0 / (10.0 ** decimal)))):
score = dice(np.where(predictions > t, 1, 0), labels)
if i >= 2 and score <= _scores[i - 1] and not had_recursion:
_subthreshs, _subscores = inner_compute_dice_curve_recursive(_threshs[i - 2], t, decimal + 1)
_threshs.extend(_subthreshs)
_scores.extend(_subscores)
had_recursion = True
_scores.append(score)
_threshs.append(t)
return _threshs, _scores
threshs, scores = inner_compute_dice_curve_recursive(0, 1.0, 1)
sorted_pairs = sorted(zip(threshs, scores))
threshs, scores = list(zip(*sorted_pairs))
return scores, threshs
# Predictive pixel-wise variance combining aleatoric and epistemic model uncertainty
# As seen in "What Uncertainties Do we Need in Bayesian Deep Learning for Computer Vision"
# p is a tensor of n monte carlo regression results
# sigma is the same for variances predicted by the network
# axis defines the index of the axis which stores the monte carlo samples
def combined_predictive_uncertainty(p, sigmas, axis=-1, log_var=False):
if log_var:
sigmas = np.exp(sigmas)
return np.mean(np.square(p), axis=axis) - np.square(np.mean(p, axis=axis)) + np.mean(sigmas, axis=axis)