|
a |
|
b/trainers/GMVAE.py |
|
|
1 |
from collections import defaultdict |
|
|
2 |
from math import inf |
|
|
3 |
|
|
|
4 |
from tensorflow.python.ops.losses.losses_impl import Reduction |
|
|
5 |
|
|
|
6 |
from trainers import trainer_utils |
|
|
7 |
from trainers.AEMODEL import Phase, update_log_dicts, indicate_early_stopping, AEMODEL |
|
|
8 |
from trainers.DLMODEL import * |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
class GMVAE(AEMODEL): |
|
|
12 |
class Config(AEMODEL.Config): |
|
|
13 |
def __init__(self): |
|
|
14 |
super().__init__('GMVAE') |
|
|
15 |
self.dim_c = 6 |
|
|
16 |
self.dim_z = 1 |
|
|
17 |
self.dim_w = 1 |
|
|
18 |
self.c_lambda = 1 |
|
|
19 |
self.restore_lr = 1e-3 |
|
|
20 |
self.restore_steps = 150 |
|
|
21 |
self.tv_lambda = 1.8 |
|
|
22 |
|
|
|
23 |
def __init__(self, sess, config, network=None): |
|
|
24 |
super().__init__(sess, config, network) |
|
|
25 |
self.x = tf.placeholder(tf.float32, [None, self.config.outputHeight, self.config.outputWidth, self.config.numChannels], name='x') |
|
|
26 |
self.tv_lambda = tf.placeholder(tf.float32, shape=()) |
|
|
27 |
|
|
|
28 |
# Additional Parameters |
|
|
29 |
self.dim_c = self.config.dim_c |
|
|
30 |
self.dim_z = self.config.dim_z |
|
|
31 |
self.dim_w = self.config.dim_w |
|
|
32 |
self.c_lambda = self.config.c_lambda |
|
|
33 |
self.restore_lr = self.config.restore_lr |
|
|
34 |
self.restore_steps = self.config.restore_steps |
|
|
35 |
self.tv_lambda_value = self.config.tv_lambda |
|
|
36 |
|
|
|
37 |
self.outputs = self.network(self.x, dropout_rate=self.dropout_rate, dropout=self.dropout, config=self.config) |
|
|
38 |
|
|
|
39 |
self.w_mu = self.outputs['w_mu'] |
|
|
40 |
self.w_log_sigma = self.outputs['w_log_sigma'] |
|
|
41 |
self.z_sampled = self.outputs['z_sampled'] |
|
|
42 |
self.z_mu = self.outputs['z_mu'] |
|
|
43 |
self.z_log_sigma = self.outputs['z_log_sigma'] |
|
|
44 |
self.z_wc_mu = self.outputs['z_wc_mus'] |
|
|
45 |
self.z_wc_log_sigma_inv = self.outputs['z_wc_log_sigma_invs'] |
|
|
46 |
self.xz_mu = self.outputs['xz_mu'] |
|
|
47 |
self.pc = self.outputs['pc'] |
|
|
48 |
self.reconstruction = self.xz_mu |
|
|
49 |
|
|
|
50 |
# Print Stats |
|
|
51 |
self.get_number_of_trainable_params() |
|
|
52 |
# Instantiate Saver |
|
|
53 |
self.saver = tf.train.Saver() |
|
|
54 |
|
|
|
55 |
def train(self, dataset): |
|
|
56 |
# Determine trainable variables |
|
|
57 |
self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) |
|
|
58 |
|
|
|
59 |
# Build losses |
|
|
60 |
# 1. the reconstruction loss |
|
|
61 |
self.losses['L1'] = tf.losses.absolute_difference(self.x, self.xz_mu, reduction=Reduction.NONE) |
|
|
62 |
self.losses['L1_sum'] = tf.reduce_sum(self.losses['L1'], axis=[1, 2, 3]) |
|
|
63 |
self.losses['reconstructionLoss'] = self.losses['mean_p_loss'] = mean_p_loss = tf.reduce_mean(self.losses['L1_sum']) |
|
|
64 |
self.losses['L2'] = tf.losses.mean_squared_error(self.x, self.xz_mu, reduction=Reduction.NONE) |
|
|
65 |
self.losses['L2_sum'] = tf.reduce_sum(self.losses['L2']) |
|
|
66 |
|
|
|
67 |
# 2. E_c_w[KL(q(z|x)|| p(z|w, c))] |
|
|
68 |
# calculate KL for each cluster |
|
|
69 |
# KL = 1/2( logvar2 - logvar1 + (var1 + (m1-m2)^2)/var2 - 1 ) here dim_c clusters, then we have batchsize * dim_z * dim_c |
|
|
70 |
# then [batchsize * dim_z* dim_c] * [batchsize * dim_c * 1] = batchsize * dim_z * 1, squeeze it to batchsize * dim_z |
|
|
71 |
self.z_mu = tf.tile(tf.expand_dims(self.z_mu, -1), [1, 1, self.dim_c]) |
|
|
72 |
z_logvar = tf.tile(tf.expand_dims(self.z_log_sigma, -1), [1, 1, self.dim_c]) |
|
|
73 |
d_mu_2 = tf.squared_difference(self.z_mu, self.z_wc_mu) |
|
|
74 |
d_var = (tf.exp(z_logvar) + d_mu_2) * (tf.exp(self.z_wc_log_sigma_inv) + 1e-6) |
|
|
75 |
d_logvar = -1 * (self.z_wc_log_sigma_inv + z_logvar) |
|
|
76 |
kl = (d_var + d_logvar - 1) * 0.5 |
|
|
77 |
con_prior_loss = tf.reduce_sum(tf.squeeze(tf.matmul(kl, tf.expand_dims(self.pc, -1)), -1), 1) |
|
|
78 |
self.losses['conditional_prior_loss'] = mean_con_loss = tf.reduce_mean(con_prior_loss) |
|
|
79 |
|
|
|
80 |
# 3. KL(q(w|x)|| p(w) ~ N(0, I)) |
|
|
81 |
# KL = 1/2 sum( mu^2 + var - logvar -1 ) |
|
|
82 |
w_loss = 0.5 * tf.reduce_sum(tf.square(self.w_mu) + tf.exp(self.w_log_sigma) - self.w_log_sigma - 1, 1) |
|
|
83 |
self.losses['w_prior_loss'] = mean_w_loss = tf.reduce_mean(w_loss) |
|
|
84 |
|
|
|
85 |
# 4. KL(q(c|z)||p(c)) = - sum_k q(k) log p(k)/q(k) , k = dim_c |
|
|
86 |
# let p(k) = 1/K# |
|
|
87 |
|
|
|
88 |
closs1 = tf.reduce_sum(tf.multiply(self.pc, tf.log(self.pc * self.dim_c + 1e-8)), [1]) |
|
|
89 |
c_lambda = tf.cast(tf.fill(tf.shape(closs1), self.c_lambda), dtype=tf.float32) |
|
|
90 |
c_loss = tf.maximum(closs1, c_lambda) |
|
|
91 |
self.losses['c_prior_loss'] = mean_c_loss = tf.reduce_mean(c_loss) |
|
|
92 |
|
|
|
93 |
self.losses['loss'] = mean_p_loss + mean_con_loss + mean_w_loss + mean_c_loss |
|
|
94 |
self.losses['restore'] = self.tv_lambda * tf.image.total_variation(tf.subtract(self.x, self.reconstruction)) |
|
|
95 |
self.losses['grads'] = tf.gradients(self.losses['loss'] + self.losses['restore'], self.x)[0] |
|
|
96 |
|
|
|
97 |
# Set the optimizer |
|
|
98 |
optim = self.create_optimizer(self.losses['loss'], var_list=self.variables, learningrate=self.config.learningrate, |
|
|
99 |
beta1=self.config.beta1, type=self.config.optimizer) |
|
|
100 |
|
|
|
101 |
# initialize all variables |
|
|
102 |
tf.global_variables_initializer().run(session=self.sess) |
|
|
103 |
|
|
|
104 |
best_cost = inf |
|
|
105 |
last_improvement = 0 |
|
|
106 |
last_epoch = self.load_checkpoint() |
|
|
107 |
|
|
|
108 |
# Go go go! |
|
|
109 |
for epoch in range(last_epoch, self.config.numEpochs): |
|
|
110 |
############ |
|
|
111 |
# TRAINING # |
|
|
112 |
############ |
|
|
113 |
self.process(dataset, epoch, Phase.TRAIN, optim, visualization_keys=['reconstruction', 'L1', 'L2']) |
|
|
114 |
|
|
|
115 |
# Increment last_epoch counter and save model |
|
|
116 |
last_epoch += 1 |
|
|
117 |
self.save(self.checkpointDir, last_epoch) |
|
|
118 |
|
|
|
119 |
############## |
|
|
120 |
# VALIDATION # |
|
|
121 |
############## |
|
|
122 |
val_scalars = self.process(dataset, epoch, Phase.VAL, visualization_keys=['reconstruction', 'L1', 'L2']) |
|
|
123 |
|
|
|
124 |
best_cost, last_improvement, stop = indicate_early_stopping(val_scalars['loss'], best_cost, last_improvement) |
|
|
125 |
if stop: |
|
|
126 |
print('Early stopping was triggered due to no improvement over the last 5 epochs') |
|
|
127 |
break |
|
|
128 |
|
|
|
129 |
if self.tv_lambda_value == -1 and self.restore_steps > 0: |
|
|
130 |
############## |
|
|
131 |
# Determine lambda # |
|
|
132 |
############## |
|
|
133 |
print('Determining best lambda') |
|
|
134 |
self.determine_best_lambda(dataset) |
|
|
135 |
|
|
|
136 |
def process(self, dataset, epoch, phase: Phase, optim=None, visualization_keys=None): |
|
|
137 |
scalars = defaultdict(list) |
|
|
138 |
visuals = [] |
|
|
139 |
num_batches = dataset.num_batches(self.config.batchsize, set=phase.value) |
|
|
140 |
for idx in range(0, num_batches): |
|
|
141 |
batch, _, _ = dataset.next_batch(self.config.batchsize, set=phase.value) |
|
|
142 |
|
|
|
143 |
fetches = { |
|
|
144 |
'reconstruction': self.reconstruction, |
|
|
145 |
**self.losses |
|
|
146 |
} |
|
|
147 |
if phase == Phase.TRAIN: |
|
|
148 |
fetches['optimizer'] = optim |
|
|
149 |
|
|
|
150 |
feed_dict = { |
|
|
151 |
self.x: batch, |
|
|
152 |
self.tv_lambda: self.tv_lambda_value, |
|
|
153 |
self.dropout: phase == Phase.TRAIN, |
|
|
154 |
self.dropout_rate: self.config.dropout_rate |
|
|
155 |
} |
|
|
156 |
|
|
|
157 |
run = self.sess.run(fetches, feed_dict=feed_dict) |
|
|
158 |
|
|
|
159 |
# Print to console |
|
|
160 |
print(f'Epoch ({phase.value}): [{epoch:2d}] [{idx:4d}/{num_batches:4d}] loss: {run["loss"]:.8f}') |
|
|
161 |
update_log_dicts(*trainer_utils.get_summary_dict(batch, run, visualization_keys), scalars, visuals) |
|
|
162 |
|
|
|
163 |
self.log_to_tensorboard(epoch, scalars, visuals, phase) |
|
|
164 |
return scalars |
|
|
165 |
|
|
|
166 |
def reconstruct(self, x, dropout=False): |
|
|
167 |
if x.ndim < 4: |
|
|
168 |
x = np.expand_dims(x, 0) |
|
|
169 |
|
|
|
170 |
if self.restore_steps == 0: |
|
|
171 |
feed_dict = { |
|
|
172 |
self.x: x, |
|
|
173 |
self.tv_lambda: self.tv_lambda_value, |
|
|
174 |
self.dropout: dropout, |
|
|
175 |
self.dropout_rate: self.config.dropout_rate |
|
|
176 |
} |
|
|
177 |
results = self.sess.run({'reconstruction': self.reconstruction}, feed_dict=feed_dict) |
|
|
178 |
else: |
|
|
179 |
restored = x.copy() |
|
|
180 |
for step in range(self.restore_steps): |
|
|
181 |
feed_dict = { |
|
|
182 |
self.x: restored, |
|
|
183 |
self.tv_lambda: self.tv_lambda_value, |
|
|
184 |
self.dropout: dropout, # apply only during MC sampling. |
|
|
185 |
self.dropout_rate: self.config.dropout_rate |
|
|
186 |
} |
|
|
187 |
run = self.sess.run({'grads': self.losses['grads']}, feed_dict=feed_dict) |
|
|
188 |
gradients = run['grads'] |
|
|
189 |
restored -= self.restore_lr * gradients |
|
|
190 |
|
|
|
191 |
results = { |
|
|
192 |
'reconstruction': restored |
|
|
193 |
} |
|
|
194 |
results['l1err'] = np.sum(np.abs(x - results['reconstruction'])) |
|
|
195 |
results['l2err'] = np.sum(np.sqrt((x - results['reconstruction']) ** 2)) |
|
|
196 |
|
|
|
197 |
return results |
|
|
198 |
|
|
|
199 |
def determine_best_lambda(self, dataset): |
|
|
200 |
lambdas = np.arange(20) / 10.0 |
|
|
201 |
mean_errors = [] |
|
|
202 |
fetches = self.losses |
|
|
203 |
|
|
|
204 |
for tv_lambda in lambdas: |
|
|
205 |
errors = [] |
|
|
206 |
for idx in range(int(dataset.num_batches(self.config.batchsize, set=Phase.VAL.value) * 0.2)): |
|
|
207 |
batch, _, _ = dataset.next_batch(self.config.batchsize, set=Phase.VAL.value) |
|
|
208 |
restored = batch.copy() |
|
|
209 |
for step in range(self.restore_steps): |
|
|
210 |
feed_dict = { |
|
|
211 |
self.x: restored, |
|
|
212 |
self.tv_lambda: tv_lambda, |
|
|
213 |
self.dropout: False, |
|
|
214 |
self.dropout_rate: self.config.dropout_rate |
|
|
215 |
} |
|
|
216 |
run = self.sess.run(fetches, feed_dict=feed_dict) |
|
|
217 |
restored -= self.restore_lr * run['grads'] |
|
|
218 |
errors.append(np.sum(np.abs(batch - restored))) |
|
|
219 |
mean_error = np.mean(errors) |
|
|
220 |
mean_errors.append(mean_error) |
|
|
221 |
print(f'mean_error for lambda {tv_lambda}: {mean_error}') |
|
|
222 |
self.tv_lambda_value = lambdas[mean_errors.index(min(mean_errors))] |
|
|
223 |
print(f'Best lambda: {self.tv_lambda_value}') |