from collections import defaultdict
from math import inf
from tensorflow.python.ops.losses.losses_impl import Reduction
from trainers import trainer_utils
from trainers.AEMODEL import Phase, update_log_dicts, indicate_early_stopping, AEMODEL
from trainers.DLMODEL import *
class GMVAE(AEMODEL):
class Config(AEMODEL.Config):
def __init__(self):
super().__init__('GMVAE')
self.dim_c = 6
self.dim_z = 1
self.dim_w = 1
self.c_lambda = 1
self.restore_lr = 1e-3
self.restore_steps = 150
self.tv_lambda = 1.8
def __init__(self, sess, config, network=None):
super().__init__(sess, config, network)
self.x = tf.placeholder(tf.float32, [None, self.config.outputHeight, self.config.outputWidth, self.config.numChannels], name='x')
self.tv_lambda = tf.placeholder(tf.float32, shape=())
# Additional Parameters
self.dim_c = self.config.dim_c
self.dim_z = self.config.dim_z
self.dim_w = self.config.dim_w
self.c_lambda = self.config.c_lambda
self.restore_lr = self.config.restore_lr
self.restore_steps = self.config.restore_steps
self.tv_lambda_value = self.config.tv_lambda
self.outputs = self.network(self.x, dropout_rate=self.dropout_rate, dropout=self.dropout, config=self.config)
self.w_mu = self.outputs['w_mu']
self.w_log_sigma = self.outputs['w_log_sigma']
self.z_sampled = self.outputs['z_sampled']
self.z_mu = self.outputs['z_mu']
self.z_log_sigma = self.outputs['z_log_sigma']
self.z_wc_mu = self.outputs['z_wc_mus']
self.z_wc_log_sigma_inv = self.outputs['z_wc_log_sigma_invs']
self.xz_mu = self.outputs['xz_mu']
self.pc = self.outputs['pc']
self.reconstruction = self.xz_mu
# Print Stats
self.get_number_of_trainable_params()
# Instantiate Saver
self.saver = tf.train.Saver()
def train(self, dataset):
# Determine trainable variables
self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
# Build losses
# 1. the reconstruction loss
self.losses['L1'] = tf.losses.absolute_difference(self.x, self.xz_mu, reduction=Reduction.NONE)
self.losses['L1_sum'] = tf.reduce_sum(self.losses['L1'], axis=[1, 2, 3])
self.losses['reconstructionLoss'] = self.losses['mean_p_loss'] = mean_p_loss = tf.reduce_mean(self.losses['L1_sum'])
self.losses['L2'] = tf.losses.mean_squared_error(self.x, self.xz_mu, reduction=Reduction.NONE)
self.losses['L2_sum'] = tf.reduce_sum(self.losses['L2'])
# 2. E_c_w[KL(q(z|x)|| p(z|w, c))]
# calculate KL for each cluster
# KL = 1/2( logvar2 - logvar1 + (var1 + (m1-m2)^2)/var2 - 1 ) here dim_c clusters, then we have batchsize * dim_z * dim_c
# then [batchsize * dim_z* dim_c] * [batchsize * dim_c * 1] = batchsize * dim_z * 1, squeeze it to batchsize * dim_z
self.z_mu = tf.tile(tf.expand_dims(self.z_mu, -1), [1, 1, self.dim_c])
z_logvar = tf.tile(tf.expand_dims(self.z_log_sigma, -1), [1, 1, self.dim_c])
d_mu_2 = tf.squared_difference(self.z_mu, self.z_wc_mu)
d_var = (tf.exp(z_logvar) + d_mu_2) * (tf.exp(self.z_wc_log_sigma_inv) + 1e-6)
d_logvar = -1 * (self.z_wc_log_sigma_inv + z_logvar)
kl = (d_var + d_logvar - 1) * 0.5
con_prior_loss = tf.reduce_sum(tf.squeeze(tf.matmul(kl, tf.expand_dims(self.pc, -1)), -1), 1)
self.losses['conditional_prior_loss'] = mean_con_loss = tf.reduce_mean(con_prior_loss)
# 3. KL(q(w|x)|| p(w) ~ N(0, I))
# KL = 1/2 sum( mu^2 + var - logvar -1 )
w_loss = 0.5 * tf.reduce_sum(tf.square(self.w_mu) + tf.exp(self.w_log_sigma) - self.w_log_sigma - 1, 1)
self.losses['w_prior_loss'] = mean_w_loss = tf.reduce_mean(w_loss)
# 4. KL(q(c|z)||p(c)) = - sum_k q(k) log p(k)/q(k) , k = dim_c
# let p(k) = 1/K#
closs1 = tf.reduce_sum(tf.multiply(self.pc, tf.log(self.pc * self.dim_c + 1e-8)), [1])
c_lambda = tf.cast(tf.fill(tf.shape(closs1), self.c_lambda), dtype=tf.float32)
c_loss = tf.maximum(closs1, c_lambda)
self.losses['c_prior_loss'] = mean_c_loss = tf.reduce_mean(c_loss)
self.losses['loss'] = mean_p_loss + mean_con_loss + mean_w_loss + mean_c_loss
self.losses['restore'] = self.tv_lambda * tf.image.total_variation(tf.subtract(self.x, self.reconstruction))
self.losses['grads'] = tf.gradients(self.losses['loss'] + self.losses['restore'], self.x)[0]
# Set the optimizer
optim = self.create_optimizer(self.losses['loss'], var_list=self.variables, learningrate=self.config.learningrate,
beta1=self.config.beta1, type=self.config.optimizer)
# initialize all variables
tf.global_variables_initializer().run(session=self.sess)
best_cost = inf
last_improvement = 0
last_epoch = self.load_checkpoint()
# Go go go!
for epoch in range(last_epoch, self.config.numEpochs):
############
# TRAINING #
############
self.process(dataset, epoch, Phase.TRAIN, optim, visualization_keys=['reconstruction', 'L1', 'L2'])
# Increment last_epoch counter and save model
last_epoch += 1
self.save(self.checkpointDir, last_epoch)
##############
# VALIDATION #
##############
val_scalars = self.process(dataset, epoch, Phase.VAL, visualization_keys=['reconstruction', 'L1', 'L2'])
best_cost, last_improvement, stop = indicate_early_stopping(val_scalars['loss'], best_cost, last_improvement)
if stop:
print('Early stopping was triggered due to no improvement over the last 5 epochs')
break
if self.tv_lambda_value == -1 and self.restore_steps > 0:
##############
# Determine lambda #
##############
print('Determining best lambda')
self.determine_best_lambda(dataset)
def process(self, dataset, epoch, phase: Phase, optim=None, visualization_keys=None):
scalars = defaultdict(list)
visuals = []
num_batches = dataset.num_batches(self.config.batchsize, set=phase.value)
for idx in range(0, num_batches):
batch, _, _ = dataset.next_batch(self.config.batchsize, set=phase.value)
fetches = {
'reconstruction': self.reconstruction,
**self.losses
}
if phase == Phase.TRAIN:
fetches['optimizer'] = optim
feed_dict = {
self.x: batch,
self.tv_lambda: self.tv_lambda_value,
self.dropout: phase == Phase.TRAIN,
self.dropout_rate: self.config.dropout_rate
}
run = self.sess.run(fetches, feed_dict=feed_dict)
# Print to console
print(f'Epoch ({phase.value}): [{epoch:2d}] [{idx:4d}/{num_batches:4d}] loss: {run["loss"]:.8f}')
update_log_dicts(*trainer_utils.get_summary_dict(batch, run, visualization_keys), scalars, visuals)
self.log_to_tensorboard(epoch, scalars, visuals, phase)
return scalars
def reconstruct(self, x, dropout=False):
if x.ndim < 4:
x = np.expand_dims(x, 0)
if self.restore_steps == 0:
feed_dict = {
self.x: x,
self.tv_lambda: self.tv_lambda_value,
self.dropout: dropout,
self.dropout_rate: self.config.dropout_rate
}
results = self.sess.run({'reconstruction': self.reconstruction}, feed_dict=feed_dict)
else:
restored = x.copy()
for step in range(self.restore_steps):
feed_dict = {
self.x: restored,
self.tv_lambda: self.tv_lambda_value,
self.dropout: dropout, # apply only during MC sampling.
self.dropout_rate: self.config.dropout_rate
}
run = self.sess.run({'grads': self.losses['grads']}, feed_dict=feed_dict)
gradients = run['grads']
restored -= self.restore_lr * gradients
results = {
'reconstruction': restored
}
results['l1err'] = np.sum(np.abs(x - results['reconstruction']))
results['l2err'] = np.sum(np.sqrt((x - results['reconstruction']) ** 2))
return results
def determine_best_lambda(self, dataset):
lambdas = np.arange(20) / 10.0
mean_errors = []
fetches = self.losses
for tv_lambda in lambdas:
errors = []
for idx in range(int(dataset.num_batches(self.config.batchsize, set=Phase.VAL.value) * 0.2)):
batch, _, _ = dataset.next_batch(self.config.batchsize, set=Phase.VAL.value)
restored = batch.copy()
for step in range(self.restore_steps):
feed_dict = {
self.x: restored,
self.tv_lambda: tv_lambda,
self.dropout: False,
self.dropout_rate: self.config.dropout_rate
}
run = self.sess.run(fetches, feed_dict=feed_dict)
restored -= self.restore_lr * run['grads']
errors.append(np.sum(np.abs(batch - restored)))
mean_error = np.mean(errors)
mean_errors.append(mean_error)
print(f'mean_error for lambda {tv_lambda}: {mean_error}')
self.tv_lambda_value = lambdas[mean_errors.index(min(mean_errors))]
print(f'Best lambda: {self.tv_lambda_value}')