Switch to unified view

a b/trainers/ConstrainedAAE.py
1
from collections import defaultdict
2
from math import inf
3
4
from tensorflow.python.ops.losses.losses_impl import Reduction
5
6
from trainers import trainer_utils
7
from trainers.AEMODEL import AEMODEL, Phase, indicate_early_stopping, update_log_dicts
8
from trainers.DLMODEL import *
9
10
11
class ConstrainedAAE(AEMODEL):
12
    class Config(AEMODEL.Config):
13
        def __init__(self):
14
            super().__init__('ConstrainedAAE')
15
            self.rho = 1
16
            self.scale = 10.0
17
18
    def __init__(self, sess, config, network=None):
19
        super().__init__(sess, config, network)
20
        self.x = tf.placeholder(tf.float32, [None, self.config.outputHeight, self.config.outputWidth, self.config.numChannels], name='x')
21
        self.z = tf.placeholder(tf.float32, [None, self.config.zDim], name='z')
22
23
        self.outputs = self.network(self.z, self.x, dropout_rate=self.dropout_rate, dropout=self.dropout, config=self.config)
24
        self.reconstruction = self.x_hat = self.outputs['x_hat']
25
        self.generated = self.z_ = self.outputs['z_']
26
        self.d_ = self.outputs['d_']
27
        self.d = self.outputs['d']
28
        self.z_hat = self.outputs['z_hat']
29
        self.d_hat = self.outputs['d_hat']
30
        self.z_rec = self.outputs['z_rec']
31
32
        self.scale = self.config.scale
33
        self.rho = self.config.rho
34
35
        # Print Stats
36
        self.get_number_of_trainable_params()
37
        # Instantiate Saver
38
        self.saver = tf.train.Saver()
39
40
    def train(self, dataset):
41
        # Determine trainable variables
42
        self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
43
44
        # Build losses
45
        self.losses['gen_loss'] = gen_loss = -tf.reduce_mean(self.d_)
46
        self.losses['disc_loss_without_grad'] = disc_loss = tf.reduce_mean(self.d_) - tf.reduce_mean(self.d)
47
        self.losses['disc_loss_real'] = tf.reduce_mean(self.d)
48
        self.losses['disc_loss_fake'] = tf.reduce_mean(self.d_)
49
50
        ddx = tf.gradients(self.d_hat, self.z_hat)[0]
51
        ddx = tf.sqrt(tf.reduce_sum(tf.square(ddx), axis=1))
52
        ddx = tf.reduce_mean(tf.square(ddx - 1.0) * self.scale)
53
        self.losses['disc_loss'] = disc_loss = disc_loss + ddx
54
55
        self.losses['L1'] = tf.losses.absolute_difference(self.x, self.reconstruction, reduction=Reduction.NONE)
56
        self.losses['reconstructionLoss'] = tf.reduce_mean(tf.reduce_sum(self.losses['L1'], axis=[1, 2, 3]))
57
58
        self.losses['L2'] = l2 = tf.reduce_mean(tf.losses.mean_squared_error(self.x, self.reconstruction, reduction=Reduction.NONE), axis=[1, 2, 3])
59
        self.losses['Rec_z'] = rec_z = tf.reduce_mean(tf.losses.mean_squared_error(self.z_rec, self.z_, reduction=Reduction.NONE), axis=[1])
60
61
        self.losses['loss'] = ae_loss = tf.reduce_mean(l2 + self.rho * rec_z)
62
63
        with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
64
            # Set the optimizer
65
            t_vars = tf.trainable_variables()
66
            dis_vars = [var for var in t_vars if 'Discriminator' in var.name]
67
            gen_vars = [var for var in t_vars if 'Encoder' in var.name]
68
            ae_vars = t_vars
69
70
            optim_dis = tf.train.AdamOptimizer(learning_rate=self.config.learningrate, beta1=0.5, beta2=0.9).minimize(disc_loss, var_list=dis_vars)
71
            optim_gen = tf.train.AdamOptimizer(learning_rate=self.config.learningrate, beta1=0.5, beta2=0.9).minimize(gen_loss, var_list=gen_vars)
72
            optim_ae = tf.train.AdamOptimizer(learning_rate=self.config.learningrate, beta1=0.5, beta2=0.9).minimize(ae_loss, var_list=ae_vars)
73
74
        # initialize all variables
75
        tf.global_variables_initializer().run(session=self.sess)
76
77
        best_cost = inf
78
        last_improvement = 0
79
        last_epoch = self.load_checkpoint()
80
81
        # Go go go!
82
        for epoch in range(last_epoch, self.config.numEpochs):
83
            ############
84
            # TRAINING #
85
            ############
86
            phase = Phase.TRAIN
87
            scalars = defaultdict(list)
88
            visuals = []
89
            d_iters = 20
90
            num_batches = dataset.num_batches(self.config.batchsize, set=phase.value)
91
            for idx in range(0, num_batches):
92
                batch, _, _ = dataset.next_batch(self.config.batchsize, set=phase.value)
93
94
                run = {}
95
                for _ in range(d_iters if epoch <= 5 else 1):
96
                    # AE optimization
97
                    fetches = {
98
                        'reconstruction': self.reconstruction,
99
                        'rec_z': self.losses['Rec_z'],
100
                        'L1': self.losses['L1'],
101
                        'loss': self.losses['loss'],
102
                        'reconstructionLoss': self.losses['reconstructionLoss'],
103
                        'z_': self.z_,
104
                        'z_rec': self.z_rec,
105
                        'optimizer_ae': optim_ae
106
                    }
107
108
                    feed_dict = self.get_feed_dict(batch, phase)
109
110
                    run = self.sess.run(fetches, feed_dict=feed_dict)
111
112
                for _ in range(d_iters):
113
                    # Discriminator optimization
114
                    fetches = {
115
                        'disc_loss': self.losses['disc_loss'],
116
                        'optimizer_d': optim_dis,
117
                    }
118
119
                    feed_dict = self.get_feed_dict(batch, phase)
120
121
                    run = {**run, **self.sess.run(fetches, feed_dict=feed_dict)}
122
123
                # Generator optimization
124
                fetches = {
125
                    'gen_loss': self.losses['gen_loss'],
126
                    'optimizer_g': optim_gen,
127
                }
128
129
                feed_dict = self.get_feed_dict(batch, phase)
130
131
                run = {**run, **self.sess.run(fetches, feed_dict=feed_dict)}
132
133
                # Print to console
134
                print(f'Epoch ({phase.value}): [{epoch:2d}] [{idx:4d}/{num_batches:4d}] loss: {run["reconstructionLoss"]:.8f},'
135
                      f' gen_loss: {run["gen_loss"]:.8f}, disc_loss: {run["disc_loss"]:.8f}')
136
                update_log_dicts(*trainer_utils.get_summary_dict(batch, run), scalars, visuals)
137
138
            self.log_to_tensorboard(epoch, scalars, visuals, phase)
139
140
            # Increment last_epoch counter and save model
141
            last_epoch += 1
142
            self.save(self.checkpointDir, last_epoch)
143
144
            ##############
145
            # VALIDATION #
146
            ##############
147
            scalars = defaultdict(list)
148
            visuals = []
149
            phase = Phase.VAL
150
            num_batches = dataset.num_batches(self.config.batchsize, set=phase.value)
151
            for idx in range(0, num_batches):
152
                batch, _, _ = dataset.next_batch(self.config.batchsize, set=phase.value)
153
154
                fetches = {
155
                    'reconstruction': self.reconstruction,
156
                    **self.losses
157
                }
158
159
                feed_dict = self.get_feed_dict(batch, phase)
160
                run = self.sess.run(fetches, feed_dict=feed_dict)
161
162
                # Print to console
163
                print(f'Epoch ({phase.value}): [{epoch:2d}] [{idx:4d}/{num_batches:4d}] loss: {run["loss"]:.8f}')
164
                update_log_dicts(*trainer_utils.get_summary_dict(batch, run), scalars, visuals)
165
166
            self.log_to_tensorboard(epoch, scalars, visuals, phase)
167
168
            best_cost, last_improvement, stop = indicate_early_stopping(scalars['reconstructionLoss'], best_cost, last_improvement)
169
            if stop:
170
                print('Early stopping was triggered due to no improvement over the last 5 epochs')
171
                break
172
173
    def get_feed_dict(self, batch, phase):
174
        return {
175
            self.x: batch,
176
            self.z: self.sample_z(),
177
            self.dropout: phase == Phase.TRAIN,
178
            self.dropout_rate: self.config.dropout_rate
179
        }
180
181
    def reconstruct(self, x, dropout=False):
182
        if x.ndim < 4:
183
            x = np.expand_dims(x, 0)
184
185
        fetches = {
186
            'reconstruction': self.reconstruction
187
        }
188
189
        feed_dict = {
190
            self.x: x,
191
            self.z: self.sample_z(),
192
            self.dropout: dropout,  # apply only during MC sampling.
193
            self.dropout_rate: self.config.dropout_rate
194
        }
195
        results = self.sess.run(fetches, feed_dict=feed_dict)
196
197
        results['l1err'] = np.sum(np.abs(x - results['reconstruction']))
198
        results['l2err'] = np.sum(np.sqrt((x - results['reconstruction']) ** 2))
199
200
        return results
201
202
    def sample_z(self):
203
        return np.random.normal(size=[self.config.batchsize, self.config.zDim])