Diff of /trainers/CE.py [000000] .. [978658]

Switch to side-by-side view

--- a
+++ b/trainers/CE.py
@@ -0,0 +1,139 @@
+import random
+from collections import defaultdict
+from math import inf
+
+from tensorflow.python.ops.losses.losses_impl import Reduction
+
+from trainers import trainer_utils
+from trainers.AEMODEL import AEMODEL, Phase, indicate_early_stopping, update_log_dicts
+from trainers.DLMODEL import *
+
+
+class CE(AEMODEL):
+    class Config(AEMODEL.Config):
+        def __init__(self):
+            super().__init__('CE')
+
+    def __init__(self, sess, config, network=None):
+        super().__init__(sess, config, network)
+        self.x = tf.placeholder(tf.float32, [None, self.config.outputHeight, self.config.outputWidth, self.config.numChannels], name='x')
+        self.x_ce = tf.placeholder(tf.float32, [None, self.config.outputHeight, self.config.outputWidth, self.config.numChannels], name='input_ce')
+        self.outputs = self.network(self.x_ce, dropout_rate=self.dropout_rate, dropout=self.dropout, config=self.config)
+        self.reconstruction = self.outputs['x_hat']
+
+        # Print Stats
+        self.get_number_of_trainable_params()
+        # Instantiate Saver
+        self.saver = tf.train.Saver()
+
+    def train(self, dataset):
+        # Determine trainable variables
+        self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
+
+        # Build losses
+        self.losses['L1'] = tf.losses.absolute_difference(self.x, self.reconstruction, reduction=Reduction.NONE)
+        self.losses['loss'] = self.losses['reconstructionLoss'] = tf.reduce_mean(tf.reduce_sum(self.losses['L1'], axis=[1, 2, 3]))
+
+        # Set the optimizer
+        optim = self.create_optimizer(self.losses['loss'], var_list=self.variables, learningrate=self.config.learningrate,
+                                      beta1=self.config.beta1, type=self.config.optimizer)
+
+        # initialize all variables
+        tf.global_variables_initializer().run(session=self.sess)
+
+        best_cost = inf
+        last_improvement = 0
+        last_epoch = self.load_checkpoint()
+
+        # Go go go!
+        for epoch in range(last_epoch, self.config.numEpochs):
+            ############
+            # TRAINING #
+            ############
+            self.process(dataset, epoch, Phase.TRAIN, optim)
+
+            # Increment last_epoch counter and save model
+            last_epoch += 1
+            self.save(self.checkpointDir, last_epoch)
+
+            ##############
+            # VALIDATION #
+            ##############
+            val_scalars = self.process(dataset, epoch, Phase.VAL)
+
+            best_cost, last_improvement, stop = indicate_early_stopping(val_scalars['loss'], best_cost, last_improvement)
+            if stop:
+                print('Early stopping was triggered due to no improvement over the last 5 epochs')
+                break
+
+    def process(self, dataset, epoch, phase: Phase, optim=None):
+        scalars = defaultdict(list)
+        visuals = []
+        num_batches = dataset.num_batches(self.config.batchsize, set=phase.value)
+        for idx in range(0, num_batches):
+            batch, _, brainmasks = dataset.next_batch(self.config.batchsize, return_brainmask=True, set=phase.value)
+
+            masked_batch = retrieve_masked_batch(batch, brainmasks)
+
+            fetches = {
+                'reconstruction': self.reconstruction,
+                **self.losses
+            }
+            if phase == Phase.TRAIN:
+                fetches['optimizer'] = optim
+
+            feed_dict = {
+                self.x: batch,
+                self.x_ce: masked_batch if phase == Phase.TRAIN else batch,
+                self.dropout: phase == Phase.TRAIN,
+                self.dropout_rate: self.config.dropout_rate
+            }
+
+            run = self.sess.run(fetches, feed_dict=feed_dict)
+
+            # Print to console
+            print(f'Epoch ({phase.value}): [{epoch:2d}] [{idx:4d}/{num_batches:4d}] loss: {run["loss"]:.8f}')
+            update_log_dicts(*trainer_utils.get_summary_dict(batch, run), scalars, visuals)
+
+        self.log_to_tensorboard(epoch, scalars, visuals, phase)
+        return scalars
+
+    def reconstruct(self, x, dropout=False):
+        if x.ndim < 4:
+            x = np.expand_dims(x, 0)
+
+        fetches = {
+            'reconstruction': self.reconstruction
+        }
+
+        feed_dict = {
+            self.x: x,
+            self.x_ce: x,
+            self.dropout: dropout,
+            self.dropout_rate: self.config.dropout_rate
+        }
+        results = self.sess.run(fetches, feed_dict=feed_dict)
+
+        results['l1err'] = np.sum(np.abs(x - results['reconstruction']))
+        results['l2err'] = np.sum(np.sqrt((x - results['reconstruction']) ** 2))
+
+        return results
+
+
+def retrieve_masked_batch(batch, brainmasks):
+    def retrieve_brain_range(brainmask):
+        pixels = np.argwhere(brainmask).T
+        return (min(pixels[0]), max(pixels[0])), (min(pixels[1]), max(pixels[1]))
+
+    brain_ranges = list(map(lambda brainmask: retrieve_brain_range(brainmask), brainmasks))
+    # Masking out for Context Encoder
+    m = np.ones(batch.shape)
+    for (m, brain_range) in zip(m, brain_ranges):
+        for _ in range(random.randint(1, 3)):
+            size_w, size_h = 20, 20
+            if brain_range[0][0] < brain_range[0][1] - size_w and brain_range[1][0] < brain_range[1][1] - size_h:
+                x = random.randint(brain_range[0][0], brain_range[0][1] - size_w)
+                y = random.randint(brain_range[1][0], brain_range[1][1] - size_h)
+                m[x:x + size_w, y:y + size_h] = 0
+    masked_batch = batch * m
+    return masked_batch