Diff of /trainers/AE.py [000000] .. [978658]

Switch to unified view

a b/trainers/AE.py
1
from collections import defaultdict
2
from math import inf
3
4
from tensorflow.python.ops.losses.losses_impl import Reduction
5
6
from trainers import trainer_utils
7
from trainers.AEMODEL import AEMODEL, Phase, update_log_dicts, indicate_early_stopping
8
from trainers.DLMODEL import *
9
10
11
class AE(AEMODEL):
12
    def __init__(self, sess, config, network=None):
13
        super().__init__(sess, config, network)
14
        self.x = tf.placeholder(tf.float32, [None, self.config.outputHeight, self.config.outputWidth, self.config.numChannels], name='x')
15
        self.outputs = self.network(self.x, dropout_rate=self.dropout_rate, dropout=self.dropout, config=self.config)
16
        self.reconstruction = self.outputs['x_hat']
17
18
        # Print Stats
19
        self.get_number_of_trainable_params()
20
        # Instantiate Saver
21
        self.saver = tf.train.Saver()
22
23
    def train(self, dataset):
24
        # Determine trainable variables
25
        self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
26
27
        # Build losses
28
        self.losses['L1'] = tf.losses.absolute_difference(self.x, self.reconstruction, reduction=Reduction.NONE)
29
        self.losses['reconstructionLoss'] = self.losses['loss'] = tf.reduce_mean(tf.reduce_sum(self.losses['L1'], axis=[1, 2, 3]))
30
31
        # Set the optimizer
32
        optim = self.create_optimizer(self.losses['loss'], var_list=self.variables, learningrate=self.config.learningrate,
33
                                      beta1=self.config.beta1, type=self.config.optimizer)
34
35
        # initialize all variables
36
        tf.global_variables_initializer().run(session=self.sess)
37
38
        best_cost = inf
39
        last_improvement = 0
40
        last_epoch = self.load_checkpoint()
41
42
        # Go go go!
43
        for epoch in range(last_epoch, self.config.numEpochs):
44
            ############
45
            # TRAINING #
46
            ############
47
            self.process(dataset, epoch, Phase.TRAIN, optim)
48
49
            # Increment last_epoch counter and save model
50
            last_epoch += 1
51
            self.save(self.checkpointDir, last_epoch)
52
53
            ##############
54
            # VALIDATION #
55
            ##############
56
            val_scalars = self.process(dataset, epoch, Phase.VAL)
57
58
            best_cost, last_improvement, stop = indicate_early_stopping(val_scalars['loss'], best_cost, last_improvement)
59
            if stop:
60
                print('Early stopping was triggered due to no improvement over the last 5 epochs')
61
                break
62
63
    def process(self, dataset, epoch, phase: Phase, optim=None):
64
        scalars = defaultdict(list)
65
        visuals = []
66
        num_batches = dataset.num_batches(self.config.batchsize, set=phase.value)
67
        for idx in range(0, num_batches):
68
            batch, _, _ = dataset.next_batch(self.config.batchsize, set=phase.value)
69
70
            fetches = {
71
                'reconstruction': self.reconstruction,
72
                **self.losses
73
            }
74
            if phase == Phase.TRAIN:
75
                fetches['optimizer'] = optim
76
77
            feed_dict = {
78
                self.x: batch,
79
                self.dropout: phase == Phase.TRAIN,
80
                self.dropout_rate: self.config.dropout_rate
81
            }
82
83
            run = self.sess.run(fetches, feed_dict=feed_dict)
84
85
            # Print to console
86
            print(f'Epoch ({phase.value}): [{epoch:2d}] [{idx:4d}/{num_batches:4d}] loss: {run["loss"]:.8f}')
87
            update_log_dicts(*trainer_utils.get_summary_dict(batch, run), scalars, visuals)
88
89
        self.log_to_tensorboard(epoch, scalars, visuals, phase)
90
        return scalars
91
92
    def reconstruct(self, x, dropout=False):
93
        if x.ndim < 4:
94
            x = np.expand_dims(x, 0)
95
96
        fetches = {
97
            'reconstruction': self.reconstruction
98
        }
99
100
        feed_dict = {
101
            self.x: x,
102
            self.dropout: dropout,  # apply only during MC sampling.
103
            self.dropout_rate: self.config.dropout_rate
104
        }
105
        results = self.sess.run(fetches, feed_dict=feed_dict)
106
107
        results['l1err'] = np.sum(np.abs(x - results['reconstruction']))
108
        results['l2err'] = np.sum(np.sqrt((x - results['reconstruction']) ** 2))
109
110
        return results