--- a +++ b/mains/main_constrainedAAE_Chen.py @@ -0,0 +1,27 @@ +#!/usr/bin/env python +import tensorflow as tf + +from models.constrained_adversarial_autoencoder_Chen import constrained_adversarial_autoencoder_Chen +from trainers.ConstrainedAAE import ConstrainedAAE +from utils import Evaluation +from utils.default_config_setup import get_config, get_options, get_datasets, Dataset + +tf.reset_default_graph() +dataset = Dataset.BRAINWEB +options = get_options(batchsize=8, learningrate=0.001, numEpochs=1, zDim=128, outputWidth=128, outputHeight=128) +options['data']['dir'] = options["globals"][dataset.value] +datasetHC, datasetPC = get_datasets(options, dataset=dataset) +config = get_config(trainer=ConstrainedAAE, options=options, optimizer='ADAM', intermediateResolutions=[16, 16], dropout_rate=0.1, dataset=datasetHC) + +config.kappa = 1.0 +config.scale = 10.0 +config.rho = 1.0 + +# Create an instance of the model and train it +model = ConstrainedAAE(tf.Session(), config, network=constrained_adversarial_autoencoder_Chen) + +# Train it +model.train(datasetHC) + +# Evaluate +Evaluation.evaluate(datasetPC, model, options, description=f"{type(datasetHC).__name__}-{options['threshold']}", epoch=str(options['train']['numEpochs']))