--- a +++ b/mains/main_GMVAE_spatial.py @@ -0,0 +1,31 @@ +#!/usr/bin/env python +import tensorflow as tf + +from models.gaussian_mixture_variational_autoencoder_spatial import gaussian_mixture_variational_autoencoder_spatial +from trainers.GMVAE_spatial import GMVAE_spatial +from utils import Evaluation +from utils.default_config_setup import get_config, get_options, get_datasets, Dataset + +tf.reset_default_graph() +dataset = Dataset.BRAINWEB +options = get_options(batchsize=8, learningrate=5e-5, numEpochs=1, zDim=128, outputWidth=128, outputHeight=128) +options['data']['dir'] = options["globals"][dataset.value] +datasetHC, datasetPC = get_datasets(options, dataset=dataset) +config = get_config(trainer=GMVAE_spatial, options=options, optimizer='ADAM', intermediateResolutions=[8, 8], dropout_rate=0.1, dataset=datasetHC) + +config.dim_c = 9 +config.dim_z = 1 +config.dim_w = 1 +config.c_lambda = 1 +config.restore_lr = 1e-3 +config.restore_steps = 150 +config.tv_lambda = -1.0 + +# Create an instance of the model and train it +model = GMVAE_spatial(tf.Session(), config, network=gaussian_mixture_variational_autoencoder_spatial) + +# Train it +model.train(datasetHC, ) + +# Evaluate +Evaluation.evaluate(datasetPC, model, options, description=f"{type(datasetHC).__name__}-{options['threshold']}", epoch=str(options['train']['numEpochs']))