a b/mains/main_AAE.py
1
#!/usr/bin/env python
2
import tensorflow as tf
3
4
from models.adversarial_autoencoder import adversarial_autoencoder
5
from trainers.AAE import AAE
6
from utils import Evaluation
7
from utils.default_config_setup import get_config, get_options, get_datasets, Dataset
8
9
tf.reset_default_graph()
10
dataset = Dataset.BRAINWEB
11
options = get_options(batchsize=128, learningrate=0.0001, numEpochs=1, zDim=128, outputWidth=128, outputHeight=128)
12
options['data']['dir'] = options["globals"][dataset.value]
13
datasetHC, datasetPC = get_datasets(options, dataset=dataset)
14
config = get_config(trainer=AAE, options=options, optimizer='ADAM', intermediateResolutions=[16, 16], dropout_rate=0.1, dataset=datasetHC)
15
16
config.scale = 10.0
17
18
# Create an instance of the model and train it
19
model = AAE(tf.Session(), config, network=adversarial_autoencoder)
20
21
# Train it
22
model.train(datasetHC)
23
24
# Evaluate
25
Evaluation.evaluate(datasetPC, model, options, description=f"{type(datasetHC).__name__}-{options['threshold']}", epoch=str(options['train']['numEpochs']))