|
a |
|
b/dataloaders/NRRD.py |
|
|
1 |
import matplotlib.pyplot as plt |
|
|
2 |
import nrrd |
|
|
3 |
import numpy as np |
|
|
4 |
|
|
|
5 |
|
|
|
6 |
# Class for working with a NII file in the context of machine learning |
|
|
7 |
class NRRD: |
|
|
8 |
VIEW_MAPPING = {'saggital': 0, 'coronal': 1, 'axial': 2} |
|
|
9 |
|
|
|
10 |
def __init__(self, filename): |
|
|
11 |
self.data, self.info = nrrd.read(filename) |
|
|
12 |
|
|
|
13 |
@property |
|
|
14 |
def num_saggital_slices(self): |
|
|
15 |
return self.data.shape[NRRD.VIEW_MAPPING['saggital']] |
|
|
16 |
|
|
|
17 |
@property |
|
|
18 |
def num_coronal_slices(self): |
|
|
19 |
return self.data.shape[NRRD.VIEW_MAPPING['coronal']] |
|
|
20 |
|
|
|
21 |
@property |
|
|
22 |
def num_axial_slices(self): |
|
|
23 |
return self.data.shape[NRRD.VIEW_MAPPING['axial']] |
|
|
24 |
|
|
|
25 |
@staticmethod |
|
|
26 |
def set_view_mapping(mapping): |
|
|
27 |
NRRD.VIEW_MAPPING = mapping |
|
|
28 |
|
|
|
29 |
def shape(self): |
|
|
30 |
return self.data.shape |
|
|
31 |
|
|
|
32 |
@staticmethod |
|
|
33 |
def get_axis_index(axis): |
|
|
34 |
return NRRD.VIEW_MAPPING[axis] |
|
|
35 |
|
|
|
36 |
def num_slices_along_axis(self, axis): |
|
|
37 |
return self.data.shape[NRRD.VIEW_MAPPING[axis]] |
|
|
38 |
|
|
|
39 |
def normalize(self, method='scaling', lowerpercentile=None, upperpercentile=None): |
|
|
40 |
# Convert the attribute "data" to float() |
|
|
41 |
self.data = self.data.astype(np.float32) |
|
|
42 |
|
|
|
43 |
if lowerpercentile is not None: |
|
|
44 |
qlow = np.percentile(self.data, lowerpercentile) |
|
|
45 |
if upperpercentile is not None: |
|
|
46 |
qup = np.percentile(self.data, upperpercentile) |
|
|
47 |
|
|
|
48 |
if lowerpercentile is not None: |
|
|
49 |
self.data[self.data < qlow] = qlow |
|
|
50 |
if upperpercentile is not None: |
|
|
51 |
self.data[self.data > qup] = qup |
|
|
52 |
|
|
|
53 |
if method == 'scaling': |
|
|
54 |
# Divide "data" by its maximum value |
|
|
55 |
self.data -= self.data.min() |
|
|
56 |
self.data = np.multiply(self.data, 1.0 / self.data.max()) |
|
|
57 |
elif method == 'standardization': |
|
|
58 |
self.data = self.data - np.mean(self.data) |
|
|
59 |
self.data = self.data / np.std(self.data) |
|
|
60 |
|
|
|
61 |
def get_slice(self, the_slice, axis='axial'): |
|
|
62 |
indices = [slice(None)] * self.data.ndim |
|
|
63 |
indices[NRRD.VIEW_MAPPING[axis]] = the_slice |
|
|
64 |
return self.data[indices] |
|
|
65 |
|
|
|
66 |
def get_data(self): |
|
|
67 |
return self.data |
|
|
68 |
|
|
|
69 |
def set_to_zero(self): |
|
|
70 |
self.data.fill(0.0) |
|
|
71 |
|
|
|
72 |
def visualize(self, axis='axial', pause=0.2): |
|
|
73 |
for i in range(self.data.shape[NRRD.VIEW_MAPPING[axis]]): |
|
|
74 |
img = self.get_slice(i, axis=axis) |
|
|
75 |
plt.imshow(img) |
|
|
76 |
plt.pause(pause) |