[a18f15]: / tasks / vic-train.py

Download this file

247 lines (191 with data), 8.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
""" VIC-reg self-supervision training
"""
import argparse
import json
import math
import os
import random
import signal
import subprocess
import sys
import time
from tqdm import tqdm
from torch import nn, optim
import torch
import torchvision
import torchinfo
sys.path.append(os.getcwd())
import utilities.runUtils as rutl
import utilities.logUtils as lutl
from algorithms.vicreg import VICReg, LARS, adjust_learning_rate
from datacode.natural_image_data import Cifar100Dataset
from datacode.ultrasound_data import FetalUSFramesDataset
from datacode.augmentations import BarlowTwinsTransformOrig, CustomInfoMaxTransform
print(f"Pytorch version: {torch.__version__}")
print(f"cuda version: {torch.version.cuda}")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Device Used:", device)
###============================= Configure and Setup ===========================
CFG = rutl.ObjDict(
use_amp = True, #automatic Mixed precision
datapath = "/home/USR/WERK/data/a.hdf5",
valdatapath = "/home/USR/WERK/valdata/b.hdf5",
skip_count = 5,
epochs = 1000,
batch_size = 2048,
workers = 24,
image_size = 256,
base_lr = 0.2,
weight_decay = 1e-6,
sim_coeff = 25.0, # Invariance
std_coeff = 25.0, # Variance
cov_coeff = 1.0, # Covariance
featx_arch = "resnet50",
featx_pretrain = None, # "IMGNET-1K"
projector = [8192,8192,8192],
print_freq_step = 1000, #steps
ckpt_freq_epoch = 5, #epochs
valid_freq_epoch = 5, #epochs
disable_tqdm = False, #True--> to disable
checkpoint_dir = "hypotheses/-dummy/ssl-vicreg/",
resume_training = True,
)
## --------
parser = argparse.ArgumentParser(description='VIC-Reg ISIC Training')
parser.add_argument('--load-json', type=str, metavar='JSON',
help='Load settings from file in json format. Command line options override values in file.')
args = parser.parse_args()
if args.load_json:
with open(args.load_json, 'rt') as f:
CFG.__dict__.update(json.load(f))
### ----------------------------------------------------------------------------
CFG.gLogPath = CFG.checkpoint_dir
CFG.gWeightPath = CFG.checkpoint_dir + '/weights/'
### ============================================================================
def getDataLoaders():
transform_obj = BarlowTwinsTransformOrig(image_size=CFG.image_size)
traindataset = FetalUSFramesDataset( hdf5_file= CFG.datapath,
transform = transform_obj,
load2ram = False, frame_skip=CFG.skip_count)
trainloader = torch.utils.data.DataLoader( traindataset, shuffle=True,
batch_size=CFG.batch_size, num_workers=CFG.workers,
pin_memory=True)
validdataset = FetalUSFramesDataset( hdf5_file= CFG.valdatapath,
transform = transform_obj,
load2ram = False, frame_skip=CFG.skip_count)
validloader = torch.utils.data.DataLoader( validdataset, shuffle=False,
batch_size=CFG.batch_size, num_workers=CFG.workers,
pin_memory=True)
lutl.LOG2DICTXT({"TRAIN DatasetClass":traindataset.get_info(),
"TransformsClass": str(transform_obj.get_composition()),
}, CFG.gLogPath +'/misc.txt')
lutl.LOG2DICTXT({"VALID DatasetClass":validdataset.get_info(),
"TransformsClass": str(transform_obj.get_composition()),
}, CFG.gLogPath +'/misc.txt')
return trainloader, validloader
def getModelnOptimizer():
model = VICReg( featx_arch=CFG.featx_arch,
projector_sizes=CFG.projector,
batch_size=CFG.batch_size,
sim_coeff = CFG.sim_coeff,
std_coeff = CFG.std_coeff,
cov_coeff = CFG.cov_coeff,
featx_pretrain=CFG.featx_pretrain,
).to(device)
optimizer = LARS(model.parameters(), lr=0, weight_decay=CFG.weight_decay,
weight_decay_filter=True, lars_adaptation_filter=True)
model_info = torchinfo.summary(model, 2*[(1, 3, CFG.image_size, CFG.image_size)],
verbose=0)
lutl.LOG2TXT(model_info, CFG.gLogPath +'/misc.txt', console= False)
return model.to(device), optimizer
### ----------------------------------------------------------------------------
def simple_main():
### SETUP
rutl.START_SEED()
torch.cuda.device(device)
torch.backends.cudnn.benchmark = True
if os.path.exists(CFG.checkpoint_dir) and (not CFG.resume_training):
raise Exception("CheckPoint folder already exists and restart_training not enabled; Somethings Wrong!")
if not os.path.exists(CFG.gWeightPath): os.makedirs(CFG.gWeightPath)
with open(CFG.gLogPath+"/exp_config.json", 'a') as f:
json.dump(vars(CFG), f, indent=4)
### DATA ACCESS
trainloader, validloader = getDataLoaders()
### MODEL, OPTIM
model, optimizer = getModelnOptimizer()
## Automatically resume from checkpoint if it exists and enabled
ckpt = None
if CFG.resume_training:
try: ckpt = torch.load(CFG.gWeightPath+'/checkpoint-1.pth', map_location='cpu')
except:
try:ckpt = torch.load(CFG.gWeightPath+'/checkpoint-0.pth', map_location='cpu')
except: print("Check points are not loadable. Starting fresh...")
if ckpt:
start_epoch = ckpt['epoch']
model.load_state_dict(ckpt['model'])
optimizer.load_state_dict(ckpt['optimizer'])
lutl.LOG2TXT(f"Restarting Training from EPOCH:{start_epoch} of {CFG.checkpoint_dir}", CFG.gLogPath +'/misc.txt')
else:
start_epoch = 0
### MODEL TRAINING
start_time = time.time()
best_loss = float('inf')
wgt_suf = 0 # foolproof savetime crash
if CFG.use_amp: scaler = torch.cuda.amp.GradScaler() # for mixed precision
for epoch in range(start_epoch, CFG.epochs):
## ---- Training Routine ----
t_running_loss_ = 0
model.train()
for step, (y1, y2) in tqdm(enumerate(trainloader,
start=epoch * len(trainloader)),
disable=CFG.disable_tqdm):
y1 = y1.to(device, non_blocking=True)
y2 = y2.to(device, non_blocking=True)
lr_ = adjust_learning_rate(CFG, optimizer, trainloader, step)
optimizer.zero_grad()
if CFG.use_amp: ## with mixed precision
with torch.cuda.amp.autocast():
loss = model.forward(y1, y2)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
loss = model.forward(y1, y2)
loss.backward()
optimizer.step()
t_running_loss_+=loss.item()
if step % CFG.print_freq_step == 0:
stats = dict(epoch=epoch, step=step,
time=int(time.time() - start_time),
step_loss=loss.item(),
lr= lr_,)
lutl.LOG2DICTXT(stats, CFG.checkpoint_dir +'/train-stats.txt')
train_epoch_loss = t_running_loss_/len(trainloader)
# save checkpoint
if (epoch+1) % CFG.ckpt_freq_epoch == 0:
wgt_suf = (wgt_suf+1) %2
state = dict(epoch=epoch, model=model.state_dict(),
optimizer=optimizer.state_dict())
torch.save(state, CFG.gWeightPath +f'/checkpoint-{wgt_suf}.pth')
## ---- Validation Routine ----
if (epoch+1) % CFG.valid_freq_epoch == 0:
model.eval()
v_running_loss_ = 0
with torch.no_grad():
for (y1, y2) in tqdm(validloader, total=len(validloader),
disable=CFG.disable_tqdm):
y1 = y1.to(device, non_blocking=True)
y2 = y2.to(device, non_blocking=True)
loss = model.forward(y1, y2)
v_running_loss_ += loss.item()
valid_epoch_loss = v_running_loss_/len(validloader)
best_flag = False
if valid_epoch_loss < best_loss:
best_flag = True
best_loss = valid_epoch_loss
v_stats = dict(epoch=epoch, best=best_flag, wgt_suf=wgt_suf,
train_loss=train_epoch_loss,
valid_loss=valid_epoch_loss)
lutl.LOG2DICTXT(v_stats, CFG.gLogPath+'/valid-stats.txt')
if __name__ == '__main__':
simple_main()