""" Bootstrap Your Own Latent (BYOL) training
"""
import argparse
import json
import os
import sys
import time
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torchinfo
sys.path.append(os.getcwd())
import utilities.runUtils as rutl
import utilities.logUtils as lutl
from algorithms.byol import BYOL
from algorithms.simclr import LARS
from algorithms.loss.ssl_losses import NegativeCosineSimilarity
from datacode.natural_image_data import Cifar100Dataset
from datacode.ultrasound_data import FetalUSFramesDataset
from datacode.augmentations import SimCLRTransform
print(f"Pytorch version: {torch.__version__}")
print(f"cuda version: {torch.version.cuda}")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Device Used:", device)
###============================= Configure and Setup ===========================
CFG = rutl.ObjDict(
use_amp = True, #automatic Mixed precision
datapath = "/home/mothilal.asokan/Downloads/HC701/Project/US-Fetal-Video-Frames_V1-1/train-all-frames.hdf5",
valdatapath = "/home/mothilal.asokan/Downloads/HC701/Project/US-Fetal-Video-Frames_V1-1/valid-all-frames.hdf5",
skip_count = 5,
epochs = 10,
batch_size = 160,
workers = 24,
image_size = 256,
weight_decay = 1.5e-6,
lr = 0.2,
featx_arch = "resnet50", # "resnet34/50/101"
featx_pretrain = None, # "IMGNET-1K" or None
print_freq_step = 500, #steps
ckpt_freq_epoch = 5, #epochs
valid_freq_epoch = 5, #epochs
disable_tqdm = False, #True--> to disable
checkpoint_dir = "hypotheses/-dummy/ssl/",
resume_training = True,
)
## --------
parser = argparse.ArgumentParser(description='BYOL Training')
parser.add_argument('--load-json', type=str, metavar='JSON',
help='Load settings from file in json format. Command line options override values in python file.')
args = parser.parse_args()
if args.load_json:
with open(args.load_json, 'rt') as f:
CFG.__dict__.update(json.load(f))
### ----------------------------------------------------------------------------
CFG.gLogPath = CFG.checkpoint_dir
CFG.gWeightPath = CFG.checkpoint_dir + '/weights/'
### ============================================================================
def getDataLoaders():
transform_obj = SimCLRTransform(image_size=CFG.image_size)
traindataset = FetalUSFramesDataset( hdf5_file= CFG.datapath,
transform = transform_obj,
load2ram = False, frame_skip=CFG.skip_count)
trainloader = torch.utils.data.DataLoader( traindataset, shuffle=True,
batch_size=CFG.batch_size, num_workers=CFG.workers,
pin_memory=True,drop_last=True )
validdataset = FetalUSFramesDataset( hdf5_file= CFG.valdatapath,
transform = transform_obj,
load2ram = False, frame_skip=CFG.skip_count)
validloader = torch.utils.data.DataLoader( validdataset, shuffle=False,
batch_size=CFG.batch_size, num_workers=CFG.workers,
pin_memory=True, drop_last=True)
lutl.LOG2DICTXT({"TRAIN DatasetClass":traindataset.get_info(),
"TransformsClass": str(transform_obj.get_composition()),
}, CFG.gLogPath +'/misc.txt')
lutl.LOG2DICTXT({"VALID DatasetClass":validdataset.get_info(),
"TransformsClass": str(transform_obj.get_composition()),
}, CFG.gLogPath +'/misc.txt')
return trainloader, validloader
def getModelnOptimizer():
model = BYOL(featx_arch=CFG.featx_arch,
pretrained=CFG.featx_pretrain).to(device)
optimizer = LARS(model.parameters(), lr=CFG.lr, weight_decay=CFG.weight_decay,
momentum=0.9)
model_info = torchinfo.summary(model, [(CFG.batch_size, 3, CFG.image_size, CFG.image_size)],
verbose=0)
lutl.LOG2TXT(model_info, CFG.gLogPath +'/misc.txt', console= False)
return model.to(device), optimizer
def update_momentum(model: nn.Module, model_ema: nn.Module, m: float):
"""Updates parameters of `model_ema` with Exponential Moving Average of `model`
Momentum encoders are a crucial component fo models such as MoCo or BYOL.
Examples:
>>> backbone = resnet18()
>>> projection_head = MoCoProjectionHead()
>>> backbone_momentum = copy.deepcopy(moco)
>>> projection_head_momentum = copy.deepcopy(projection_head)
>>>
>>> # update momentum
>>> update_momentum(moco, moco_momentum, m=0.999)
>>> update_momentum(projection_head, projection_head_momentum, m=0.999)
"""
for model_ema, model in zip(model_ema.parameters(), model.parameters()):
model_ema.data = model_ema.data * m + model.data * (1.0 - m)
def cosine_schedule(
step: int, max_steps: int, start_value: float, end_value: float
) -> float:
"""
Use cosine decay to gradually modify start_value to reach target end_value during iterations.
Args:
step:
Current step number.
max_steps:
Total number of steps.
start_value:
Starting value.
end_value:
Target value.
Returns:
Cosine decay value.
"""
if step < 0:
raise ValueError("Current step number can't be negative")
if max_steps < 1:
raise ValueError("Total step number must be >= 1")
if step > max_steps:
# Note: we allow step == max_steps even though step starts at 0 and should end
# at max_steps - 1. This is because Pytorch Lightning updates the LR scheduler
# always for the next epoch, even after the last training epoch. This results in
# Pytorch Lightning calling the scheduler with step == max_steps.
raise ValueError(
f"The current step cannot be larger than max_steps but found step {step} and max_steps {max_steps}."
)
if max_steps == 1:
# Avoid division by zero
decay = end_value
elif step == max_steps:
# Special case for Pytorch Lightning which updates LR scheduler also for epoch
# after last training epoch.
decay = end_value
else:
decay = (
end_value
- (end_value - start_value)
* (np.cos(np.pi * step / (max_steps - 1)) + 1)
/ 2
)
return decay
def criterion(x, y):
# L2 normalization
x = nn.functional.normalize(x, dim=-1, p=2)
y = nn.functional.normalize(y, dim=-1, p=2)
return 2 - 2 * (x * y).sum(dim=-1).mean()
### ----------------------------------------------------------------------------
def simple_main():
### SETUP
rutl.START_SEED()
torch.cuda.device(device)
torch.backends.cudnn.benchmark = True
if os.path.exists(CFG.checkpoint_dir) and (not CFG.resume_training):
raise Exception("CheckPoint folder already exists and restart_training not enabled; Somethings Wrong!")
if not os.path.exists(CFG.gWeightPath): os.makedirs(CFG.gWeightPath)
with open(CFG.gLogPath+"/exp_config.json", 'a') as f:
json.dump(vars(CFG), f, indent=4)
### DATA ACCESS
trainloader, validloader = getDataLoaders()
### MODEL, OPTIM
model, optimizer = getModelnOptimizer()
# criterion = NegativeCosineSimilarity()
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
len(trainloader), eta_min=0,last_epoch=-1)
## Automatically resume from checkpoint if it exists and enabled
ckpt = None
if CFG.resume_training:
try: ckpt = torch.load(CFG.gWeightPath+'/checkpoint-1.pth', map_location='cpu')
except:
try:ckpt = torch.load(CFG.gWeightPath+'/checkpoint-0.pth', map_location='cpu')
except: print("Check points are not loadable. Starting fresh...")
if ckpt:
start_epoch = ckpt['epoch']
model.load_state_dict(ckpt['model'])
optimizer.load_state_dict(ckpt['optimizer'])
lutl.LOG2TXT(f"Restarting Training from EPOCH:{start_epoch} of {CFG.checkpoint_dir}", CFG.gLogPath +'/misc.txt')
else:
start_epoch = 0
### MODEL TRAINING
start_time = time.time()
best_loss = float('inf')
wgt_suf = 0 # foolproof savetime crash
if CFG.use_amp: scaler = torch.cuda.amp.GradScaler() # for mixed precision
for epoch in range(start_epoch, CFG.epochs):
## ---- Training Routine ----
t_running_loss_ = 0
momentum_val = cosine_schedule(epoch, CFG.epochs, 0.996, 1)
model.train()
for step, (x0, x1) in tqdm(enumerate(trainloader,
start=epoch * len(trainloader)),
disable=CFG.disable_tqdm):
update_momentum(model.backbone, model.backbone_momentum, m=momentum_val)
update_momentum(model.projection_head, model.projection_head_momentum, m=momentum_val)
x0 = x0.to(device, non_blocking=True)
x1 = x1.to(device, non_blocking=True)
optimizer.zero_grad()
if CFG.use_amp: ## with mixed precision
with torch.cuda.amp.autocast():
p0 = model(x0)
z0 = model.forward_momentum(x0)
p1 = model(x1)
z1 = model.forward_momentum(x1)
loss = 0.5 * (criterion(p0, z1) + criterion(p1, z0))
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
p0 = model(x0)
z0 = model.forward_momentum(x0)
p1 = model(x1)
z1 = model.forward_momentum(x1)
loss = 0.5 * (criterion(p0, z1) + criterion(p1, z0))
loss.backward()
optimizer.step()
t_running_loss_+=loss.item()
if step % CFG.print_freq_step == 0:
stats = dict(epoch=epoch, step=step,
lr_weights=optimizer.param_groups[0]['lr'],
step_loss=loss.item(),
time=int(time.time() - start_time))
lutl.LOG2DICTXT(stats, CFG.checkpoint_dir +'/train-stats.txt')
train_epoch_loss = t_running_loss_/len(trainloader)
scheduler.step()
# save checkpoint
if (epoch+1) % CFG.ckpt_freq_epoch == 0:
wgt_suf = (wgt_suf+1) %2
state = dict(epoch=epoch, model=model.state_dict(),
optimizer=optimizer.state_dict())
torch.save(state, CFG.gWeightPath +f'/checkpoint-{wgt_suf}.pth')
## ---- Validation Routine ----
if (epoch+1) % CFG.valid_freq_epoch == 0:
model.eval()
v_running_loss_ = 0
with torch.no_grad():
for (x0, x1) in tqdm(validloader, total=len(validloader),
disable=CFG.disable_tqdm):
update_momentum(model.backbone, model.backbone_momentum, m=momentum_val)
update_momentum(model.projection_head, model.projection_head_momentum, m=momentum_val)
x0 = x0.to(device, non_blocking=True)
x1 = x1.to(device, non_blocking=True)
p0 = model(x0)
z0 = model.forward_momentum(x0)
p1 = model(x1)
z1 = model.forward_momentum(x1)
loss = 0.5 * (criterion(p0, z1) + criterion(p1, z0))
v_running_loss_ += loss.item()
valid_epoch_loss = v_running_loss_/len(validloader)
best_flag = False
if valid_epoch_loss < best_loss:
best_flag = True
best_loss = valid_epoch_loss
v_stats = dict(epoch=epoch, best=best_flag, wgt_suf=wgt_suf,
train_loss=train_epoch_loss,
valid_loss=valid_epoch_loss)
lutl.LOG2DICTXT(v_stats, CFG.gLogPath+'/valid-stats.txt')
if __name__ == '__main__':
simple_main()